SCIENCE & MATHEMATICS

SCIENCE
ANIMAL BEHAVIOUR
AQUACULTURE
BIODIVERSITY & CONSERVATION
BIOTECHNOLOGY
CLEAN TECHNOLOGY
DESIGN & TECHNOLOGY INNOVATION
FORENSIC & ANALYTICAL SCIENCE
MARINE BIOLOGY
MARINE BIOLOGY / AQUACULTURE
NANOTECHNOLOGY
MATHEMATICAL SCIENCES
YOUR NEW
STUDENT HUB
AND PLAZA

OPENING SEMESTER 1, 2016 | flinders.edu.au/studenthub
CONTENTS

04 SCIENCE & MATHEMATICS
06 MAJOR STUDY AREAS IN SCIENCE
10 SCIENCE
14 SCIENCE (HONOURS) HIGH ACHIEVERS PROGRAM
18 ANIMAL BEHAVIOUR
20 AQUACULTURE
22 BIODIVERSITY & CONSERVATION
24 BIOTECHNOLOGY
26 CLEAN TECHNOLOGY
32 DESIGN & TECHNOLOGY INNOVATION
34 FORENSIC & ANALYTICAL SCIENCE
36 MARINE BIOLOGY
38 MARINE BIOLOGY / AQUACULTURE
40 NANOTECHNOLOGY
42 MATHEMATICAL SCIENCES
University should be about much more than classes, coursework and exams. You deserve the chance to extend your learning, and develop new networks, skills and expertise that will enable you to succeed in your future career.

At Flinders we are enhancing our courses to offer an educational experience that you will enjoy and that will be valued by future employers.

Our new Student Plaza and Hub will open in Semester One in 2016 with state-of-the-art facilities, creating an inspirational space for you to learn, study and socialise. The new development incorporates individual and group study areas, cafés and student kitchens, outdoor performance areas, all embedded with the latest in technology and internet access. Simply put, we are investing in creating the best possible facilities for you at Flinders.

We encourage you to compare the quality of our courses with those offered at other universities and hope that you will recognise the value of undertaking a Flinders University degree.

Professor Colin Stirling
Vice-Chancellor and President
HANDS-ON
Flinders researchers teach cutting-edge theories and practices, maintaining close links with local employers to create learning experiences to equip you for your career.

EXCELLENCE IN RESEARCH
You will benefit from the expertise of our researchers in fields such as biotechnology, groundwater hydrology, forensic and environmental science, and the invention of medical devices and technologies. We are committed to collaboration, passion and excellence in research, with 74% of our science and engineering disciplines meeting or exceeding world standards according to the most recent Australian Research Council’s Excellence in Research for Australia (ERA) evaluation.

INDUSTRY LINKS
Our degrees are shaped by industry to equip you with the skills you need to be competitive in the employment market — or as a foundation for more specialised postgraduate qualifications.

FLEXIBILITY
Our degrees can be tailored to suit those who already know what they want to specialise in and those who are not yet sure. The wide variety of specialisations allows you to narrow down your interests to establish the field best suited to you.
WHY WE’RE
SA’S
FASTEST GROWING UNIVERSITY
Flinders has a world-class reputation for research and innovation, informing the professions that shape our society and developing technologies that are transforming people’s lives. Flinders is ranked among the top 2% of research universities in the world, and the discoveries of our researchers drive what you learn in the classroom.

The $63 million Plaza Redevelopment and Student Hub will provide an extraordinary new facility for students commencing in 2016, with a 2,000 seat outdoor amphitheatre, new social learning spaces where students can gather to study and a range of services tailored to deliver an all-round campus experience for students.

Whether you are relaxing in the leafy surrounds of the Bedford Park campus, immersed in the CBD at the Victoria Square campus or contemplating the future of Australia’s economy at our brand new Tonsley building, Flinders prides itself on offering students a great on-campus experience.

Flinders offers an excellent staff-student ratio – rated as 5 stars by the 2015 Good Universities Guide, reflecting the University’s commitment to teaching. Flinders students frequently comment that they value access to lecturers and the learning environment created on campus. Our academics and teachers are connected to the current issues of the day, guiding you to question, challenge and think beyond the limits of convention, and equipping you with important skills for a successful career.

Flinders has close connections with industry, reflected in the relevance of our curriculum and the connections that a Flinders University experience offers students. Every year some Flinders students choose to do an internship at the US congress, study part of their degree in London or undertake work integrated learning opportunities with employers in Adelaide. Flinders courses are renowned for being rigorous and also work-oriented, providing graduates with a clear set of knowledge and skills that they will be able to use throughout their career.

Flinders has a world-class reputation for research and innovation, informing the professions that shape our society and developing technologies that are transforming people’s lives. Flinders is ranked among the top 2% of research universities in the world, and the discoveries of our researchers drive what you learn in the classroom.
SCIENCE & MATHEMATICS

SCIENCE AND MATHEMATICS ARE THE KEYS TO UNDERSTANDING OUR WORLD AND HOW IT WORKS.
The Faculty of Science and Engineering at Flinders offers a Bachelor of Science that provides you with an understanding of science and the tools to apply it practically. The course is available at a number of levels and across a wide range of scientific disciplines including biology, chemistry, physics, computer science and environment. The Bachelor of Mathematical Sciences gives you a firm foundation in the principles and techniques of modern mathematics and teaches you how to apply mathematics to solve today’s problems.

Bachelor of Science: This is a great option if you are still exploring your scientific passions and interests.

Bachelor of Science (Honours): This degree provides you with a pathway to a fascinating research year after your first three years of study. Honours provides you with additional skills and knowledge and allows for further specialisation and a research project.

Bachelor of Science (Honours) – Enhanced Program for High Achievers: This degree is designed to stretch students who have excelled in previous science study and introduces them to the exciting world of research from their first year at Flinders.

SPECIALISATIONS

The Bachelor of Science, Bachelor of Science (Honours) or Bachelor of Science (Honours) – Enhanced Program for High Achievers give you the option of studying a specialisation. Specialisations allow you to focus your studies in a particular area. Once complete, you will be awarded a degree with your named specialisation, which highlights to employers your expertise in this area.

The following specialisations can be taken at Flinders:
• animal behaviour
• aquaculture
• biodiversity and conservation
• biotechnology
• clean technology
• forensic and analytical science
• marine biology
• marine biology/aquaculture
• nanotechnology

Each specialisation has a separate SATAC code, except when taken within the Bachelor of Science (Honours) – Enhanced Program for High Achievers.

For more information on these specialisations, see the separate entries in this brochure.

MAJOR AREAS OF STUDY

If you do not wish to complete a specialisation then you can choose a major area of study which generally allows for more breadth of study and more room in the program to choose elective subjects.

You can choose from the following study areas:
• chemistry
• computer science
• ecology, evolution and organismal biology
• engineering science
• environmental hydrology and water resources
• information systems
• mathematics
• molecular biosciences
• molecular biosciences and microbiology
• ocean and climate sciences
• physics

Complete descriptions of each of these major areas of study can be found on pages 6-10.

BACHELOR OF MATHEMATICAL SCIENCES

A dedicated Bachelor of Mathematical Sciences is offered at Flinders for students with a passion for maths. Mathematics is the study of patterns and a fundamental scientific discipline, with applications across biology, chemistry, engineering, physics, computer science and environment as well as medicine, finance and the social sciences. Understanding maths is highly beneficial to scientists as well as being a rewarding and important pursuit in its own right.

If you do not have the prerequisites necessary to enter the Bachelor of Mathematical Sciences at Flinders you are encouraged to apply for the Bachelor of Science, where you can complete topics in mathematics and transfer to the mathematics degree with no or minimal loss of time.

More information on the Bachelor of Mathematical Sciences can be found in the separate course entry in this brochure.
Flinders gives you the flexibility to choose from major areas of study across the University’s wide range of science disciplines.

The Bachelor of Science, Bachelor of Science (Honours) and Bachelor of Science (Honours) – Enhanced Program for High Achievers all enable you to explore your passion for science with extended majors, majors or minors. You can focus in depth on one area that interests you or combine a number of areas together to create a program that suits you and your career goals.

The following major areas of study are available at Flinders. For more information on how these relate to the specific Bachelor of Science degrees, refer to the separate entries in this brochure.
CHEMISTRY
Chemistry is involved in some way with almost everything we do or use and has improved our standard of living beyond all recognition. It has provided the drugs, antibiotics and anaesthetics that have relieved pain and suffering; the polymers and plastics in our homes, cars and workplaces; the synthetic fibres of clothes; the batteries that power our homes, cars and workplaces; the batteries that power our portable technologies—the list is virtually endless.

Research chemists have various roles. They conceive, provide and evaluate new compounds, materials, investigative techniques and instrumentation, which are so often the basis of economic progress and enhancement of quality of life. Chemists study molecular transformations and how they take place, enabling us to understand our world.

The chemistry program covers the broad spectrum of chemistry at first and second years, while allowing for increased specialisation at third year.

Employment opportunities are in the wine, food, pharmaceutical, paint, mining, petrochemical, petroleum and automotive industries, and in research and analytical laboratories.

The chemistry program is accredited by the Royal Australian Chemical Institute (RACI).

COMPUTER SCIENCE
Computing has become vital to all areas of science and technology and plays an increasingly important role in commercial and social life. The computer science major and extended major provide you with a broad background in programming, databases, networks and computer systems, enabling you to develop technical expertise, professional skills and a depth of knowledge.

In first year you will gain skills in the core technologies, and knowledge of general computing and introductory programming. In second and third years you will further develop your expertise in programming and software development, and study in more depth the key facets of computer and software systems. Throughout the course, you have the opportunity to participate in group projects and presentations by guest lecturers who are computing and information technology professionals.

Assessment is designed so that it is relevant to the industries in which graduates will work.

Employment opportunities are in database administration, enterprise IT, network design and implementation, computer architecture design, computing services and software development.

The computer science program is accredited by the Australian Computer Society at the professional level.

ECOLOGY, EVOLUTION AND ORGANISMS BIOLOGY
Sustainable management of the natural environment depends on a sound understanding of biology. Evolution is an adaptive process that accounts for the enormous diversity of organisms and how this has changed over the history of life on earth. Ecology enables us to further understand how these organisms function and persist in complex communities. We have entered an era of unprecedented species extinction and habitat loss due to human pressure and global climate change, and research towards understanding the world’s biodiversity is becoming increasingly urgent.

This major introduces you to the study of living animals, plants and fungi, how they interact and their role in the complex ecology of life in communities. It will also provide an insight into current evolutionary thinking and the experimental procedures used to test new hypotheses in evolution and ecology.

First year will cover biology and the chemical foundations of life. The second and third years become more focused, with topics covering genetics, ecology, conservation biology, plant and animal diversity and physiology, and experimental design. These topics use both terrestrial and aquatic systems as examples and will involve field trips, laboratories and research projects.

Employment opportunities are with government agencies and private organisations involved with field biology or conservation such as CSIRO, national parks, universities, museums and the Environmental Protection Agency (EPA).

ENGINEERING SCIENCE
Traditionally, engineers apply science to develop solutions to technical problems. However, the difference between science and engineering is becoming increasingly blurred and engineering skills are useful for scientists in a number of disciplines, from genetics to environmental science.

The engineering science major enables you to study topics that develop engineering skills, and may also be used as a pathway to a Bachelor of Engineering.

First year topics focus on fundamental digital and analogue electronics, programming and mathematics. Second and third years extend on this, enabling you to select from a wide range of topics including microprocessors, signal processing and control systems.

Graduates have the knowledge to become engineering technologists. Employment opportunities are in sectors such as telecommunications, robotics, automotive, mining and defence.
ENVIRONMENTAL HYDROLOGY AND WATER RESOURCES
Environmental water management and protection is a rapidly growing area with strong professional employment opportunities. Importantly, it is underpinned by state-of-the-art scientific understanding and investigation. This area will appeal to students who have a keen interest in understanding, developing and applying modern multidisciplinary science to solve a diverse range of environmental and water problems, who enjoy studying outdoors in exciting field locations, and who wish to undertake a professionally oriented course. First year provides a broad background in natural sciences including earth and environmental sciences and marine sciences. In second and third years you will undertake a range of topics and project work, which equips you with professional field, laboratory and computer analysis skills. Employment opportunities are with the CSIRO, the Environmental Protection Agency (EPA), water catchment boards, private environmental consulting firms, and government water, land and biodiversity departments.

INFORMATION SYSTEMS
Information systems focuses on organisational information problems and the manner in which those problems can be solved. The study of information systems is essential to any organisation operating in the modern economy. Information systems professionals can be distinguished from computer scientists by the extent to which they focus on the information problem itself and its solution, rather than on the computer and its application as a tool. The information systems major and extended major provide you with a broad background in information, databases and computer systems, enabling you to develop relevant technical expertise, professional skills and a depth of knowledge. In first year you will gain skills in the core technologies, and knowledge of general computing and introductory programming. In second and third years you will further develop your expertise in database management, knowledge management, user management and web-based software development.

You have the opportunity to participate in group projects and presentations by guest lecturers who are computing and information technology professionals. Assessment is designed so that it is relevant to the industries in which graduates will work. Employment opportunities are in database administration, information management, enterprise IT, computing services and software development.

MATHEMATICS
Mathematics is an essential life skill. It is widely used in science, engineering and technology, and also used in a variety of other professions including finance, economics, insurance and medicine. You will gain a firm foundation in the basic principles and techniques of modern mathematics, and an understanding of how mathematics is applied in the social and natural sciences. Mathematics and mathematical modelling techniques contribute to a diverse range of research – eg genetics and financial modelling. Pure mathematics is an area that can be pursued by those who are interested in the theory of mathematics. First year introduces key concepts and techniques in calculus, analytic geometry and matrix algebra. Second and third year establishes a broad foundation that enables further study in all areas of modern mathematics. Graduates develop skills in algebra, analysis, combinatorics, geometry, mathematical logic, modelling and number theory. Employment opportunities are in estimating, modelling and forecasting. Mathematics is used in specific professions such as computer graphics, finance, insurance and linguistics.

MOLECULAR BIOSCIENCES
Molecular biosciences covers the disciplines of molecular biology, biochemistry, molecular genetics and biotechnology. In essence it involves the study of genes and proteins and how they determine the development and functioning of cells, tissues and organs in bacteria, fungi, plants and animals. It also provides the tools to investigate abnormal development and disease. It has applications in medicine, agriculture, forensic science and the study of evolutionary relationships. It can be used to cure human diseases such as cancer and malaria, and plant diseases such as bacterial and fungal blights. Molecular bioscience also provides the means for changing the genetic makeup of living organisms for economic and environmental benefit, and you will learn how to isolate, analyse and modify DNA and proteins. First year will introduce the broad scope of biology and the chemical foundations of life. In second and third years there will be opportunities for further developing your expertise. Employment opportunities are in hospitals, diagnostic laboratories, organisations such as the Commonwealth Scientific and Industrial Research Organisation (CSIRO), biotechnology companies and government departments. Graduates with a molecular biosciences major usually work in a laboratory setting but they may also become involved in field-based projects such as monitoring populations of endangered species or designing environmental restoration projects.
MOLECULAR BIOSCIENCES AND MICROBIOLOGY

This extended major combines molecular biosciences—which includes the disciplines of molecular biology, biochemistry, molecular genetics and biotechnology—with the discipline of microbiology. Microbiology is the study of the smallest organisms—micro-organisms—without which the world would not exist. Micro-organisms were the only living inhabitants on planet Earth for approximately 2.5 billion years. As they evolved, micro-organisms shaped the planet and created climate change, altering the whole planet’s atmosphere from one without oxygen to that which we breathe today.

Micro-organisms are everywhere, and have significant positive and negative benefits to us as humans and to the survival of the planet, as they play a significant role in disease and the recycling of nutrients. An extended major in molecular biosciences and microbiology will give you a scientific overview of micro-organisms, including their biochemistry, molecular biology and molecular genetics. You will gain hands-on experience and skills in isolating, culturing, counting, identifying and manipulating many different kinds of micro-organisms in the laboratory.

Employment opportunities are in the food, wine and beer industry, medicine, public health, veterinary science, agriculture, provision of safe drinking water and bioremediation, plus less obvious areas like the navy, aquaculture, the oil industry and astrobiology. Microbiology is a key component of the biotechnology industry.

OCEAN AND CLIMATE SCIENCES

Study in this area provides you with a sound basis for understanding oceans and coastal seas, and also the climate, so that resources in a changing environment can be soundly managed.

The program of study progressively develops, giving you a deeper understanding of the physical processes shaping the marine environment and influencing climate. This includes project work, directed field exercises with modern oceanographic and meteorological instruments, and theoretical challenges such as state-of-the-art computer-based modelling. There is also scope for interdisciplinary studies which combine this area with others such as biology, hydrology, physics and mathematics to broaden employment possibilities.

Employment opportunities are as a consultant or scientist with institutions such as the Bureau of Meteorology, various divisions of the Commonwealth Scientific and Industrial Research Organisation (CSIRO), South Australian Research and Development Institute (SARDI), the Environmental Protection Agency (EPA), or in aquaculture or environmental consulting firms in private industry.

PHYSICS

Physics is the enabling science behind many modern technologies and devices that influence our daily lives. With a knowledge and understanding of the fundamental laws of nature, those who have a degree in physics will be empowered to transfer their skills to any technical vocation or further study.

In first and second years you will explore the broad spectrum of known phenomena in classic and modern science, while third year explores the frontiers of modern science. Throughout the program you will gain experience tackling advanced problems using a wide range of modern instrumentation and analytical techniques.

Recent projects have included electron scattering measurements, studies of a new theory of gravity, the modelling of nucleon interactions, and the development of smart surfaces for sensors, solar cells and molecular electronics.

Physics can also be combined with other branches of science such as mathematics, chemistry, earth sciences or biology.

Diverse employment opportunities exist in a range of areas such as optics and photonics, telecommunications, micro-electronics, nano-electronics, instrumentation development, acoustics, geophysics and meteorology.

The physics program is accredited by the Australian Institute of Physics (AIP).
The Bachelor of Science and Bachelor of Science (Honours) were created to provide an exciting range of options for students who want to discover where science can take them and where they can take science. There is great flexibility in the programs, allowing you to follow your interests without being confined by traditional boundaries.

You are able to undertake studies in specialist areas as well as traditional core sciences such as chemistry, physics, biological sciences and mathematics. We also offer options as diverse as computer science, engineering science, and ocean and climate sciences.

These courses are designed to provide a strong foundation for your future. As well as understanding science, you will learn to appreciate its role in society and will develop crucial transferable skills in problem-solving, communication, teamwork and computing. These skills have been included because employers tell us they make our graduates work-ready.

Our aim is to produce graduates who are equipped not just to find a job in their chosen field, but also to create a real career path that will enable them to explore new options as science, and their own interests, change. Throughout the western world there is ongoing demand for specialists who will create the next generation of ideas and products.

Study Program

First Year

In first year you have several options:

- If you already know what areas of study you wish to pursue, you can select the relevant first-year subjects to that area.
- If you have not yet made up your mind, you can select from a range of subjects that will allow you to sample a number of science areas. You can then select the area(s) you wish to pursue towards the end of the first year.

- You can select general interest electives or science introductory subjects as part of the first-year program. Introductory science topics make these degrees accessible to students who have not studied science or maths in senior school.

Second and Third Years

In second and third years you can choose to complete:

- a specialisation and electives
- an extended major and electives
- two major sequences
- one major sequence, one minor sequence and science or non-science electives

Honours

The honours year provides you with additional skills and knowledge to pursue further scientific research or a career in a science-related field. Those who take honours will further develop their professional skills, particularly those relevant to research and development, as well as their technical expertise and knowledge.

Specialisations

Specialisations can be taken in a range of areas which include animal behaviour, aquaculture, biodiversity and conservation, biotechnology, clean technology, forensic and analytical science, marine biology, marine biology and aquaculture, and nanotechnology. For detailed information on these specialisations please refer to the separate entries in this brochure.

Extended Major Sequences

Extended major sequences can be taken in chemistry, computer science, information systems, mathematics, molecular biosciences and microbiology, or physics. Extended majors require you to complete 54 units of upper-level topics from second and third year in your chosen area.

Major Sequences

Major sequences can be taken in chemistry; computer science; ecology, evolution and organisational biology; engineering science; environmental hydrology and water resources; information systems; mathematics; molecular biosciences; ocean and climate sciences; or physics. Majors require you to complete 36 units of upper-level topics from second and third year in your chosen area.
OFFERS GREAT FLEXIBILITY, ALLOWING YOU TO FOLLOW YOUR INTERESTS WITHOUT BEING CONFINED BY TRADITIONAL BOUNDARIES

DOES NOT REQUIRE A SCIENCE BACKGROUND, JUST AN INQUIRING MIND

HELPS YOU DEVELOP CRUCIAL TRANSFERABLE SKILLS IN PROBLEM SOLVING, COMMUNICATION, TEAMWORK AND COMPUTING
He completed his honours in Hydrology, presenting research on in-situ leaching solution mining where an acid solution is injected into the ground to recover minerals such as uranium.

After working in Darwin, Fumba returned to Adelaide and accepted a place on the Geoscientist Assistance Program through the South Australian Chamber of Mines & Energy. The program provided him with the chance at a 12-month placement with a mining company in South Australia. Fumba is now a hydrologist for Minotaur Exploration, dividing his time between the far reaches of South Australia and the Minotaur headquarters in Adelaide.

Based on the many challenges he has faced, what advice does Fumba have for prospective university students?

“University can be like an ocean that you can swim in. Explore what is there for you. But importantly, do it properly and do it right. Go to the library, do the study, and make the most of it.”
The Bachelor of Science (Honours) – Enhanced Program for High Achievers provides an enhanced program of studies for students of exceptional academic ability.

The course is designed to provide a strong foundation for your future. As well as understanding science, you will learn to appreciate its role in society and will develop crucial transferable skills in problem solving, communication, teamwork and computing. These have been included because employers tell us these skills help to make our graduates work-ready.

Our aim is to produce graduates who are equipped not just to find a job in their chosen field but also to create a real career path that will enable them to explore new options as science, and their own interests, change.

This course offers opportunities to extend your study of science and develop research skills that professional scientists and postgraduate students need. This is done by embarking on research from your very first year through research training and project work and having the chance to join established teams alongside research staff and postgraduate students. You will be exposed to challenging material that will allow you to maximise your intellectual growth and potential. Throughout the degree you are given academic and personal support and during your research placements you will be mentored by both a current student and an academic advisor.
EXTENDED MAJOR SEQUENCES
Extended major sequences can be taken in chemistry, computer science, mathematics, molecular biosciences and microbiology, or physics. Extended majors require you to complete 54 units of upper-level topics from second and third year in your chosen area.

MAJOR SEQUENCES
Major sequences can be taken in chemistry; computer science; ecology, evolution and organismal biology; engineering science; environmental hydrology and water resources; information systems; mathematics; molecular biosciences; ocean and climate sciences; or physics. Majors require you to complete 36 units of upper-level topics from second and third year in your chosen area.

MINOR SEQUENCES
Minor sequences can be taken in biological science, botany, chemistry, computer science, environmental hydrology and water resources, mathematics, microbiology, physics, statistics, or zoology. Minors require you to complete 18 units of upper-level topics from second and third year in your chosen area.

CAREER OPPORTUNITIES
Some potential occupations for graduates include scientific officer, site contamination officer, hydrologist, meteorologist, clinical data analyst, and physicist.

Potential employers include Australian Centre for Plant Functional Genomics; CSIRO; The Australian Wine Research Institute; The Walter and Eliza Hall Institute of Medical Research; Australian Nuclear Science and Technology Organisation; and Department of Environment, Water and Natural Resources.

For more information on careers services and potential career opportunities go to: flinders.edu.au/careers

FURTHER STUDY
Further study options include Master of Science (research) and PhD (research).

FIND OUT MORE
More course information can be found by navigating to the Bachelor of Science (Honours) – Enhanced Program for High Achievers on our undergraduate courses page via: flinders.edu.au/courses/undergrad

OFFERS AN ENHANCED PROGRAM OF SCIENCE STUDIES THAT CHALLENGES AND REWARDS HIGH ACHIEVERS

GIVES YOU THE CHANCE TO JOIN ESTABLISHED RESEARCH TEAMS AND BE MENTORED BY RESEARCH STAFF AND POSTGRADUATE STUDENTS IN YOUR FIRST YEAR

OFFERS GREAT FLEXIBILITY ALLOWING YOU TO FOLLOW YOUR INTERESTS

Further study options include Master of Science (research) and PhD (research).

More course information can be found by navigating to the Bachelor of Science (Honours) – Enhanced Program for High Achievers on our undergraduate courses page via: flinders.edu.au/courses/undergrad

OFFERS AN ENHANCED PROGRAM OF SCIENCE STUDIES THAT CHALLENGES AND REWARDS HIGH ACHIEVERS

GIVES YOU THE CHANCE TO JOIN ESTABLISHED RESEARCH TEAMS AND BE MENTORED BY RESEARCH STAFF AND POSTGRADUATE STUDENTS IN YOUR FIRST YEAR

OFFERS GREAT FLEXIBILITY ALLOWING YOU TO FOLLOW YOUR INTERESTS

FURTHER STUDY
Further study options include Master of Science (research) and PhD (research).

FIND OUT MORE
More course information can be found by navigating to the Bachelor of Science (Honours) – Enhanced Program for High Achievers on our undergraduate courses page via: flinders.edu.au/courses/undergrad

OFFERS AN ENHANCED PROGRAM OF SCIENCE STUDIES THAT CHALLENGES AND REWARDS HIGH ACHIEVERS

GIVES YOU THE CHANCE TO JOIN ESTABLISHED RESEARCH TEAMS AND BE MENTORED BY RESEARCH STAFF AND POSTGRADUATE STUDENTS IN YOUR FIRST YEAR

OFFERS GREAT FLEXIBILITY ALLOWING YOU TO FOLLOW YOUR INTERESTS
“Through the High Achievers Program in Science, I was able to have more personal interaction with the academics, which ignited my passion for science. It was exciting to be exposed to the frontiers of research while learning the fundamentals. I came to Uni as someone with an interest in science and left feeling like a scientist, and I’m fairly sure I wouldn’t be where I am today without the High Achievers Program.”

I was encouraged by a number of academics to consider applying to do a PhD overseas. I found a project I was interested in doing here at Oxford and thought I had nothing to lose by applying for the Rhodes Scholarship. The same academics helped me through the process and I was fortunate enough to be offered this chance to study in the UK.”

“I CHOSE TO STUDY AT FLINDERS BECAUSE IT OFFERED A SCIENCE COURSE WHICH WAS TAILORED TO MY INTERESTS AND ENTAILED CLOSE CONTACT WITH THE ACADEMIC STAFF.”

Josh Makepeace
Rhodes Scholar (United Kingdom)
Flinders Science (Honours) High Achievers Program Graduate
The Bachelor of Science (Animal Behaviour) enables you to study animal behaviour from diverse perspectives including molecular ecology, conservation biology, immunology, palaeoecology, climate change, tourism, and behavioural interactions. A specialisation in animal behaviour gives you a foundation in animal behaviour and provides the opportunity to better understand the behaviour of captive and wild animals. This course promotes an understanding of the role of animal behaviour for assessing animal welfare, survival and evolution.

First year:
- You will benefit from the connections our staff have with external organisations such as Zoos SA, the South Australian Museum and the Department of Environment, Water and Natural Resources.
- Animal behaviour is the study of whole organism interactions on Earth, and how individuals respond to and affect their social and ecological environment. It provides a science-based perspective on the role of communication, reproduction and learning for survival in changing environments.
- Animal behaviour includes the study of social organisation, individual strategy and decision making, and interactions between species like predator-prey and pollination. Animal welfare is a key concern for captive animals, agriculture and research, and is a key pillar of society values.

Second and third years:
- You will be given the opportunity to apply your knowledge in a project setting by developing a public conservation plan, environmental impact study or animal behaviour research project. These opportunities give you an understanding of the tasks involved with a career in this field.

Honours:
- You will be given the opportunity to apply your knowledge in a project setting by developing a public conservation plan, environmental impact study or animal behaviour research project. These opportunities give you an understanding of the tasks involved with a career in this field.

Further study:
- More course information can be found by navigating to the Bachelor of Science (Animal Behaviour) and Bachelor of Science (Honours) (Animal Behaviour) on our undergraduate courses page via: flinders.edu.au/courses/undergrad

Career opportunities:
- Some potential occupations for graduates include animal behaviour consultant, animal welfare specialist, research assistant – avian/wildlife ecology, animal welfare officer, wildlife demonstrator, and threatened fauna recovery officer.
- Potential employers include Australian Wildlife Conservancy, CSIRO, Department of Agriculture, Department of Primary Industries and Regions, RSPCA, and Zoos SA.

Flinders University

Animal Behaviour at Flinders

The Bachelor of Science (Animal Behaviour) enables you to study animal behaviour from diverse perspectives including molecular ecology, conservation biology, immunology, palaeoecology, climate change, tourism, and behavioural interactions. A specialisation in animal behaviour gives you a foundation in animal behaviour and provides the opportunity to better understand the behaviour of captive and wild animals. This course promotes an understanding of the role of animal behaviour for assessing animal welfare, survival and evolution.

The course will provide you with an appreciation of the societal and ethical contexts of conservation biology, animal behaviour and animal welfare. You will receive training in retrieving, analysing and evaluating information relevant to animal behaviour and communicating this information to a variety of audiences.

Flinders staff have extensive experience in teaching and researching animal behaviour, attracting millions of dollars in grants and producing hundreds of publications in the field in recent years.

You can combine the Bachelor of Science (Animal Behaviour) with the following bachelor degrees: behavioural science (psychology); laws and legal practice; laws and legal practice (honours).
HAS PRACTICAL APPLICATIONS FOR SOCIETY INCLUDING URBAN PLANNING FOR WILDLIFE, SUSTAINABLE AGRICULTURE AND FISHERIES, CONSERVATION MANAGEMENT, AND NATURE-BASED TOURISM

EXAMINES ANIMAL BEHAVIOUR FROM DIFFERENT LEVELS INCLUDING EVOLUTION AND ADAPTATION, GROWTH AND DEVELOPMENT, CHEMISTRY AND PHYSIOLOGY, AND GENETIC ANCESTRY

OFFERS A BROAD BACKGROUND IN ANIMAL BEHAVIOUR, WHICH CAN FORM THE BASIS FOR FURTHER STUDY IN AREAS OF SPECIALISATION

This is such a great degree; it’s fascinating for anybody with an interest in the natural world, and in human and animal behaviour. Flinders offers impressive, world-standard facilities for the study of animal behaviour, including the $9m Biology Discovery Centre, home to a three-story ecosystem that provides cutting-edge facilities for non-invasive animal monitoring.

Professor Sonia Kleindorfer
PROFESSOR OF BIOLOGY AT FLINDERS UNIVERSITY
AQUACULTURE AT FLINDERS
The Bachelor of Science (Aquaculture) provides a combination of skills needed to be part of the growing aquaculture industry. This is the only university course of its kind in South Australia and has the support of the fishing industry through the South Australian Fishing Industry Council.

This course combines a strong background in the natural sciences with an understanding of health and safety issues, practical and management issues, and business and communications skills.

Our graduates may find work establishing and maintaining aquaculture operations, researching and developing new aquaculture technologies and methods, and assisting with government planning and decision-making.

Around half of all the fish and shellfish consumed globally is provided by the aquaculture industry, and is expected to grow in the future. Consumers demand more seafood than wild stocks can produce, and aquaculture provides a means by which this demand can be met sustainably.

Aquaculture involves the production of finfish, including salmon, barramundi, yellowtail kingfish and tuna; molluscs, including oysters, abalone, mussels and scallops; crustaceans such as prawn and freshwater and marine crayfish; and even aquatic plants such as seaweed.

PRACTICAL EXPERIENCE
There is a strong focus on developing practical skills. As an aquaculture student at Flinders you will have access to:

- sophisticated aquaculture facilities on campus in Adelaide, including six specially designed indoor laboratories that enable the culture of algae, zooplankton, fish, crustaceans and molluscs at controlled temperature and light levels
- more than 100 aquaria
- eighteen 10,000-litre outdoor tanks

You will also complete an industry placement, giving you relevant experience in the aquaculture industry. Workplace education is provided in collaboration with aquaculture operators in various locations in South Australia, interstate and overseas. This combination of approaches will provide you with a balance of scientific and real-world learning outcomes.

STUDY PROGRAM

FIRST YEAR
In first year you will take introductory topics that involve aquaculture practice and theory as well as biology, while gaining grounding in supporting areas such as chemistry. If you do not have a background in chemistry, you can choose introductory chemistry topics.

SECOND YEAR
In second year, more specialised areas are introduced, including animal diversity, genetics, evolution, biodiversity, ecology, aquaculture nutrition and water quality, aquaculture systems and technology, and experimental design and statistics. You will also complete an industry placement giving you relevant work experience.

THIRD YEAR
In third year, you will expand your knowledge of specific fields of aquaculture including disease and immunology, aquaculture reproduction, marine and freshwater biology, physiology of animals and plants, plant and algal diversity, aquaculture health and product quality, and business planning for new ventures.

In second and third years you can also select elective topics of interest from other disciplines including biology, marine mammals, environmental science, coasts and oceans and conservation.

HONOURS
The honours year provides you with additional skills and knowledge to pursue further scientific research or a career in a science-related field. You will undertake specialised courses and an individually-supervised research project in an area that interests you.

MARINE BIOLOGY / AQUACULTURE DOUBLE SPECIALISATION
You can also apply for a double specialisation in marine biology and aquaculture (see separate entry).

COMBINED DEGREES
You can combine the Bachelor of Science (Aquaculture) with the Bachelor of Laws and Legal Practice or Bachelor of Laws and Legal Practice (Honours).

CAREER OPPORTUNITIES
Some potential occupations for graduates include aquaculture development officer, fish nutrition technical officer, fisheries and ecological research assistant, fisheries officer, predator prevention officer, and selective breeding program coordinator.

Potential employers include the Department of Primary Industries and Regions SA, Huon Aquaculture, Department of Agriculture, Australian Fisheries Management Authority, Clean Seas, and Petuna Seafood.

For more information on careers services and potential career opportunities go to: flinders.edu.au/careers

FURTHER STUDY
Further study options include Master of Science (research) and PhD (research).

FIND OUT MORE
More course information can be found by navigating to the Bachelor of Science (Aquaculture) and Bachelor of Science (Honours) (Aquaculture) on our undergraduate courses page via: flinders.edu.au/courses/undergrad
Electives at Cleanseas Hatchery and the Marine Science Centre in Port Lincoln offered Scott the opportunity to undertake experiments and studies. “You learn so much when you apply your knowledge in a hands-on and practical way.” Scott found great assistance and support from the teaching staff. “The lecturers and tutors know their stuff and are up to date with the technology and the journals. And they’re easy to talk to.”

Scott Forsythe
FLINDERS AQUACULTURE AND MARINE BIOLOGY GRADUATE
Flinders works closely with the Department of Environment, Water and Natural Resources, the Plant Biodiversity Centre, the SA Museum, the SA Research and Development Institute (SARDI) and the Nature Foundation of SA on conservation projects and biodiversity surveys. The study of biodiversity is essentially the study of all living organisms in the environment, the range of different species that are found in each place, and the methods that we can use to manage ecosystems to conserve as many of those species as possible. It is a broad field, and the biodiversity and conservation programs at Flinders offer the opportunity to combine skills in conservation biology with complementary skills in areas such as computing, chemistry, earth sciences and geographic analysis.

STUDY PROGRAM
This course is built around knowledge of the core sciences that are crucial to understanding the world’s biological diversity.

FIRST YEAR
In first year you will take topics in areas such as biodiversity and conservation, evolution and the molecular basis of life, and chemistry, plus be given the opportunity to choose elective topics. Students who do not have a background in chemistry but who wish to study chemistry are able to choose introductory chemistry topics.

SECOND YEAR
In second year you will take topics in areas such as genetics, evolution and biodiversity, ecology, animal diversity, geographical information systems and experimental design and statistics as well as elective topics.

THIRD YEAR
In third year you will take topics in areas such as conservation biology, restoration ecology, plant and algal diversity, marine and freshwater biology, integrative physiology of animals and plants, human impacts and biodiversity and conservation, and ecological genetics as well as elective topics.

HONOURS
The honours year provides you with additional hands-on research skills and knowledge to pursue further scientific research or a career in a science-related field. You will undertake specialised topics and an individually supervised research project in an area that interests you.

PRACTICAL EXPERIENCE
Fieldwork and practical training is a key feature of the degrees, along with projects involving teamwork and the development of communication and professional skills.

COMBINED DEGREES
You can combine the Bachelor of Science (Biodiversity and Conservation) with the Bachelor of Laws and Legal Practice or Bachelor of Laws and Legal Practice (Honours).

CAREER OPPORTUNITIES
Some potential occupations for graduates include native biodiversity officer, conservation programs assistant, vegetation and biodiversity offsets officer, healthy habitat field officer, park ranger, and graduate terrestrial ecologist. Potential employers include Department of Environment, Water and Natural Resources; Trees For Life; Biosis; Australian Wildlife Conservancy; and SA Water.

For more information on careers services and potential career opportunities go to: flinders.edu.au/careers

FURTHER STUDY
Further study options include Master of Science (research) and PhD (research).
THIS COURSE...

- Provides you with knowledge and skills to make a difference to the local and global environment
- Is unique in South Australia for its focus on broad issues of biological diversity
- Will teach you to analyse scientific information and critically assess key environmental issues
- Involves a significant focus on work in the field and practical training

FIND OUT MORE

More course information can be found by navigating to the Bachelor of Science (Biodiversity and Conservation) and Bachelor of Science (Honours) (Biodiversity and Conservation) on our undergraduate courses page via: FLINDERS.EDU.AU/COURSES/UNDERGRAD
BIOTECHNOLOGY

STUDY PROGRAM

FIRST YEAR

In first year you will take an introductory topic in biotechnology, which will expose you to the diverse opportunities available in the field. You will also gain a foundation in biology and chemistry and undertake elective topics. Students who do not have a background in chemistry are able to choose introductory chemistry topics, making this specialisation available to those with no scientific background.

SECOND YEAR

Second year involves fundamental biology topics (molecular biology, biochemistry, microbiology and genetics) and introduces you to the process of transferring bioscience discoveries from the laboratory to the wider community and making a difference to society. The legal, ethical and social interaction between the biosciences and society is also explored.

THIRD YEAR

Third year focuses on deepening and applying scientific knowledge towards solving problems using biotechnology. You will remain interdisciplinary throughout the degree but you can choose from medical, environmental, plant science, food biotechnology and industrial and pharmaceutical biotechnology topics in your third year. All students in third year will undergo a laboratory research placement, which involves engaging with mentors in the University and the biotechnology industry in preparation for future careers.

BIOTECHNOLOGY AT FLINDERS

The Bachelor of Science (Biotechnology) prepares you to work as a professional in one of the most exciting areas of modern science by combining theory and specialised practical training in the life sciences with the study of related business, legal, ethical and social issues.

This course, which can include an honours year, will prepare you to work in existing biotechnology fields and fields that are still developing such as bioinformatics, metagenomics and systems biology.

The biotechnology specialisation is taught jointly by the Faculty of Medicine, Nursing and Health Sciences and the Faculty of Science and Engineering, giving students access to expert teaching and research in the major areas of biotechnology: medical, industrial, bioinformatics, environmental, pharmaceutical, food and agricultural biotechnology.

Biotechnology is the use of living organisms to create products or perform tasks for us. Rapid advances in genetic engineering, protein engineering, cell culture and molecular biology have given us an unprecedented ability to control life processes, leading to new discoveries and innovative solutions to many current problems. Biotechnology is changing the world around us and is considered a growth technology of the 21st century, with a diverse range of career opportunities.

CAREER OPPORTUNITIES

Some potential occupations for graduates include biotechnologist, bio-discovery research officer, trainee patent attorney, medical sales representative, production technician, and regulatory affairs officer.

Potential employers include PharmaPakPro, Pfizer, Novozymes, forensic science laboratories, medical research centres, and most Australian universities.

For more information on careers services and potential career opportunities go to: flinders.edu.au/careers

FURTHER STUDY

Further study options include the Bachelor of Science (Honours), Doctor of Medicine (MD) and PhD.

Flinders also offers a suite of postgraduate programs: Graduate Certificate and Graduate Diploma in Biotechnology, Master of Biotechnology Studies, Master of Biotechnology (research), Master of Science (research).
Melissa is working as a postdoctoral researcher in the rheumatology unit of the Royal Adelaide Hospital. She is using molecular techniques to clone and characterise enzymes that can change fatty acids in vegetables to long chain Omega-3 fatty acids which are currently found in fish. Her work will help develop alternative food sources. As part of her work, Melissa has had the opportunity to attend several conferences overseas. She has also published work and travelled overseas while completing her PhD at Flinders.
In desalination the centre's researchers are synthesising novel membrane coatings which reduce fouling of the membranes by marine organisms, thus creating more fresh water for the same energy cost. Frontier chemistry relies on the latest cutting-edge approaches to lower chemical use and create environmentally friendly solutions to industrial needs.

Clean technology activities are those that in some way use or produce renewable materials and energy sources, reduce use of natural resources (or improve efficiency), and limit or stop pollution and toxic waste while still maintaining economic viability. The Commonwealth Government has made an environmentally sustainable Australia a national priority and clean technology will play an important role in Australia's future.

STUDY PROGRAM

You will be provided with an awareness of current issues and the various technological approaches to solving these issues, including new technologies that will be used in future practices.

You will have the option of choosing one of three streams which include technology solutions, environmental solutions or biological solutions, all of which will provide you with a strong understanding of the underlying science required.

FIRST YEAR

First year gives you a grounding in science and allows for some choice of topics.

SECOND AND THIRD YEARS

In second and third years, you will focus your studies on one of three streams:

- In the technology solutions stream you will complete studies such as chemistry, clean technology, spectroscopy and data analysis, polymer science, our environment and our health and global climate change. You will look into examples of new sensors, solar cells, biodegradable materials, frontier chemical solutions and materials, coatings for improved and sustainable technologies, water treatment and membranes.
- In the environmental solutions stream you will focus on areas such as groundwater, field investigations, clean technology, environmental impact assessment, global climate change, and environmental decision-making tools. These studies examine environmental monitoring, groundwater and environmental health.
- In the biological solutions stream you will complete studies in animal diversity, ecology, clean technology, microbiology, conservation biology and restoration. Studies focus on the issues of remediation, biorestoration and bioenergy including microbial fuel cells, biogas production, biofuels and ocean and fresh water ecology.
LOOKS AT CURRENT REAL-WORLD INDUSTRIAL PRACTICES, ISSUES AND POTENTIAL IMPROVEMENTS AND SOLUTIONS

PREPARES YOU TO INFLUENCE SCIENTIFIC, INDUSTRIAL AND NON-SCIENTIFIC AUDIENCES

PROVIDES A SOLID UNDERSTANDING OF THE TECHNOLOGY AND POLICY ASPECTS AFFECTING THE CLEAN TECHNOLOGY SECTOR

RESPONSDES TO THE AUSTRALIAN GOVERNMENT’S NATIONAL PRIORITY OF AN ENVIRONMENTALLY SUSTAINABLE AUSTRALIA
With a focus on sustainability, clean technology provides an understanding of building a cleaner, safer planet. The program is accessible to all students interested in the sciences.

Amanda Ellis firmly believes that the clean technology degree at Flinders is a degree for the future. “There’s no other Bachelor of Science undergraduate course in the world in clean technology. Clean technologies are going to underpin industry in the future. We need to train well-motivated people into management and research-active positions for this purpose.”

Clean technology draws on international expertise, accessing the likes of Flinders’ Professor Colin Raston, the South Australia Premier’s Professorial Research Fellow in Clean Technology, along with world leaders in waste-water management, desalination, solar energy, biofuels, environmental management, ocean and terrestrial ecology.

The degree offers additional insight into the subject through industry-relevant projects and site visits, something that will increase as the clean technology link with industry at Tonsley becomes established.

AMANDA ELLIS IS AN ASSOCIATE PROFESSOR IN CHEMISTRY/NANOTECHNOLOGY AT FLINDERS UNIVERSITY. SHE DESIGNED, COORDINATES AND TEACHES THE FLINDERS CLEAN TECHNOLOGY DEGREE.
FLINDERS AT TONSLEY

FLINDERS AT TONSLEY IS THE HEART OF SOUTH AUSTRALIA’S NEW INDUSTRIAL FUTURE
TONSLEY EMBODIES WORLD’S BEST PRACTICE IN EDUCATION, TEACHING AND RESEARCH.

IT’S A PLACE WHERE INNOVATION, COLLABORATION AND ENTREPRENEURIAL SPIRIT COMBINE TO CREATE THE PRODUCTS AND PROCESSES OF THE 21ST CENTURY AND BEYOND.

With more than 150 staff and 2,000 students – and a 2,000-square-metre pod for heavy engineering equipment – this new precinct is a place where Flinders University students interact with business and where business interacts with Flinders researchers in areas such as engineering, medical devices and nanoscale technologies.

Flinders at Tonsley centrally locates the University’s School of Computer Science, Engineering and Mathematics, New Venture Institute, Flinders Partners, Medical Device Research Institute, and Centre for Nanoscale Science and Technology alongside some of Adelaide’s biggest businesses and industries, including South Australian-owned technology and communications company Hills.

Tonsley is located centrally between Flinders University’s Bedford Park campus and Adelaide city. It is connected to the city by train, offering convenient access 15 minutes from the city’s CBD.

It is a 5-minute car ride, a 15-minute ride on the Flinders loop bus, or a 30-minute walk from the Bedford Park campus.

TAKE INNOVATIVE, HIGH-TECH PRODUCTS AND PROCESSES FROM CONCEPT TO REALITY WITH A BACHELOR OF DESIGN AND TECHNOLOGY INNOVATION.

The collaboration, innovation and entrepreneurship at the heart of Tonsley are embodied in the University’s Bachelor of Design and Technology Innovation.

It takes more than just a great idea or invention to change the world. To put new technologies in the hands of the people who need them, you must be able to take technology concepts and make them a reality. The Bachelor of Design and Technology Innovation offers a holistic approach to designing, developing and commercialising advanced technology solutions.

The course is designed for people who possess or who would like to develop skills in creativity and problem solving, and who are interested in technology, science or engineering. If you are interested in how things work, and have good 2D visualisation, 3D modelling/prototyping and verbal communication skills, the bachelor of Design and Technology Innovation provides a great opportunity to work with people and create new things.

More information on the Bachelor of Design and Technology Innovation, including admissions details, can be found on page 32.

Pictured left: Tonsley building. Pictured below: Innovative working space at Tonsley.

“TONSLEY WILL BE A MAJOR CONTRIBUTOR TO BOTH TECHNOLOGICAL INNOVATION AND ECONOMIC GROWTH IN SOUTH AUSTRALIA IN THE DECADES TO COME.”

PROFESSOR JOHN RODDICK
DEAN OF THE SCHOOL OF COMPUTER SCIENCE, ENGINEERING AND MATHEMATICS
This course brings these three areas together to prepare you with the knowledge and skills you need to change the world through advanced technology and manufacturing.

STUDY PROGRAM

FIRST YEAR
First year provides you with a base from which to develop your knowledge and skills with topics including professional skills, engineering design and mathematics. You will then select topics in science, engineering or business to attach your design skills to a particular field.

SECOND AND THIRD YEARS
Second and third years enable you to specialise further by taking topics in innovation management, design for manufacture, product development and commercial viability assessment, and innovation in manufacturing devices. There is the opportunity to select from other areas including strategic marketing, entrepreneurship, consumer behaviour, and business planning.

In the third year you will undertake a capstone topic, design studio, which is an integrated high-technology design consulting project on exposure to the cutting-edge equipment and facilities that are useful in product design and development.

The course lets you participate in a 12-week practical work experience placement in industry in Australia or internationally including in North America, Europe or Asia.

PRACTICAL EXPERIENCE
You will be able to take advantage of Flinders University’s new technology precinct at Tonsley, where collaboration and entrepreneurship are at the heart of the University’s activities. This will give you hands-on exposure to the cutting-edge equipment and facilities that are useful in product design and development.

The course lets you participate in a 12-week industry work experience placement or an integrated high-technology design consulting project to put what you learn into practice.

COMBINED DEGREES
You can combine the Bachelor of Design and Technology Innovation with any other bachelor degree in the Faculty of Science and Engineering, subject to meeting entry requirements.

CAREER OPPORTUNITIES
Graduates from the Bachelor of Design and Technology Innovation may be employed by a product/service based commercial organisation, a design consultancy or they may develop their own product/service based intellectual property and start their own business.

Some potential occupations for graduates include product designer, business development manager, commercialisation specialist, graduate consultant, innovation strategist, and technology transfer specialist. Potential employers include Electrolux, Hills Industries, Google, Defence Science and Technology Organisation, the Department of State Development, and self-employment.

For more information on careers services and potential career opportunities go to: flinders.edu.au/careers

FIND OUT MORE
More course information can be found by navigating to the Bachelor of Design and Technology Innovation on our undergraduate courses page via: flinders.edu.au/courses/undergrad
PREPARES YOU TO TAKE INNOVATIVE, HIGH-TECH PRODUCTS AND PROCESSES FROM CONCEPT TO REALITY

PROVIDES AN UNDERSTANDING OF INDUSTRIAL DESIGN, PRODUCT DESIGN AND THE MANAGEMENT OF INNOVATION IN ONE DEGREE

PRODUCES GRADUATES WHO WILL POSSESS HIGHLY ATTRACTIVE, VITAL SKILLS IN THE RAPIDLY CHANGING ADVANCED MANUFACTURING SECTOR

LETS YOU PARTICIPATE IN A 12-WEEK INDUSTRY WORK EXPERIENCE PLACEMENT OR AN INTEGRATED HIGH-TECHNOLOGY DESIGN CONSULTING PROJECT
Forensic Science at Flinders

The Bachelor of Science (Forensic and Analytical Science) can be taken in one of two streams: forensic and analytical chemistry or forensic biology.

Forensic and analytical chemistry covers the application of analytical chemistry to matters of a legal nature, whether related to crime or the environment. Forensic biology uses aspects of life sciences to examine biological material such as body fluids, hair, muscle, bone and teeth in a forensic context.

The Flinders chemistry team is involved in exciting research in regards to fingerprint enhancement, illicit drug analysis and manufacture, forensic toxicology, and trace evidence examination.

Our research facilities are among Australia’s best, making Flinders an ideal location for teaching and research both in the laboratory and in the field.

You will benefit from our links with industry and our expertise in forensic and analytical science. Forensic science staff at Flinders have strong links with Forensic Science South Australia, the provider of forensic services in SA, and other agencies and researchers around the world. In addition, Flinders teaching and research staff have authored a highly-regarded textbook on DNA and several chapters in other works, received national research awards from the Royal Australian Chemical Institute and the National Institute of Forensic Science, and been practising forensic scientists and expert witnesses for high profile international court cases.

STUDY PROGRAM

Both the forensic and analytical chemistry and forensic biology streams combine studies in chemistry and biology with related sciences such as mathematics, which are required to process and analyse data. You will receive a thorough grounding in industrial practice and the relevant matters relating to our legal system. The course is strongly science-based. This, along with the specialist forensic skills learnt during your studies, enables you to become a desirable employee in numerous areas within the chemical and biological fields, particularly the forensic sciences.

FIRST YEAR

All students in first year undertake the same six core subjects along with a choice of two elective topics. The core topics give a sound fundamental knowledge in chemistry, biology, forensic methods and statistics. This common first year enables you to change between the streams without loss of time.

SECOND AND THIRD YEARS

In second and third years you will focus more on your preferred stream:

- **Forensic and analytical chemistry** – Examples of studies in this stream include chemical reactivity, separation science, chemical criminalistics, spectroscopy, electrochemistry, data analysis, drug action, metabolism, toxicology and analysis.
- **Forensic biology** – Examples of studies in this stream include molecular biology, DNA to genome, forensic biology, biological criminalistics and human molecular genetics.

There is also room for elective topics in both streams and you can opt to select another minor from the Bachelor of Science in an area which interests you such as physics, mathematics or computer science.

All students are given the opportunity to apply what they have learnt in advanced laboratories.

HONOURS

An honours year provides you with additional skills and knowledge to pursue further scientific research or a career in a science-related field. You will undertake specialised courses and an individually supervised research project.

CAREER OPPORTUNITIES

Some potential occupations for graduates include forensic scientist with a specialisation in chemical criminalistics, forensic drugs examination, document examination, toxicology, DNA examination or crime scene examination.

Potential employers include Forensic Science SA or one of the 13 other police or government laboratories engaged in forensic science in Australia and New Zealand, private forensic or documents examination companies such as GKA Investigations Group, and non-forensic analytical laboratories such as Safe Environments, Reserve Bank of Australia, and Adelaide Brighton.

For more information on careers services and potential career opportunities go to: flinders.edu.au/careers

FURTHER STUDY

Further study options include Master of Science (research) and PhD (research).

FIND OUT MORE

More course information can be found by navigating to the Bachelor of Science (Forensic and Analytical Science) and Bachelor of Science (Honours) (Forensic and Analytical Science) on our undergraduate courses page via: flinders.edu.au/courses/undergrad
OPENS EXCITING CAREER OPTIONS IN AREAS SUCH AS ILLICIT DRUG TESTING, DNA ANALYSIS, TRACE EVIDENCE EXAMINATION AND TOXICOLOGY

INVOLVES ANALYSING AND IDENTIFYING PHYSICAL EVIDENCE, ELEMENTS AND COMPOUNDS

HAS STRONG LINKS WITH FORENSIC SCIENCE SOUTH AUSTRALIA, THE FORENSIC SERVICE PROVIDER FOR SA

The forensics study was quite specialised. We had a small class and the lecturers were very knowledgeable and approachable too. The course seemed to offer a pretty good breakdown between textbook knowledge and practicals. The study was a good grounding and gave me an idea of the whole field. A good chemist in the forensics field needs impartiality – my study helped reinforce the need for an open mind in terms of the results that you may get.

Kelsey McGorman
FORENSIC CHEMIST WITH THE FORENSIC SCIENCE BRANCH OF THE NORTHERN TERRITORY POLICE, FIRE AND EMERGENCY SERVICES
FLINDERS FORENSIC AND ANALYTICAL CHEMISTRY GRADUATE
BACHELOR OF SCIENCE
MARINE BIOLOGY

3 PT

PREREQUISITES
None

ASSUMED KNOWLEDGE
None

SACAT CODE
224171

2015ATAR
70.10

GUARANTEED ENTRY ATAR
70.00

TAFELINK
Cert IV or above

BONUS POINTS
UEQ, LLM

BACHELOR OF SCIENCE
MARINE BIOLOGY (HONOURS)

4 PT

PREREQUISITES
None

ASSUMED KNOWLEDGE
None

SACAT CODE
224261

2015ATAR
89.30

GUARANTEED ENTRY ATAR
80.00

TAFELINK
Diploma or above

BONUS POINTS
UEQ, LLM

This specialisation can also be taken in the Bachelor of Science (Honours) — Enhanced Program for High Achievers. See separate entry for more details.

MARINE BIOLOGY AT FLINDERS

The Bachelor of Science (Marine Biology) will introduce you to all aspects of marine biology. The courses combine cutting-edge technical and theoretical knowledge with flexibility, allowing you to tailor your progress, skills and knowledge to suit your interests. Great emphasis is placed on teamwork, project design, sampling protocols, in-depth analysis, and written and oral communication skills including discussion of key marine and coastal related topics. These generic skills will prepare you for employment in a range of potential disciplines.

Flinders has the largest academic group of marine scientists in South Australia. They form a team of internationally eminent marine biologists and oceanographers undertaking world-class research on current issues in marine science. Marine biology lecturers at Flinders have strong links with the national and international community, industry and government departments. You will be introduced to a range of marine biology practitioners and taken on several field trips, including the facilities at SARDI Aquatic Sciences West Beach and the Lincoln Marine Science Centre in Port Lincoln.

Flinders is a lead partner in Marine Innovation SA (MISA), which facilitates research and infrastructure in the areas of biosecurity, ecosystem services, aquaculture innovation and product quality and value adding. MISA brings together South Australia’s top aquatic institutions and research scientists.

Marine biology is the study of the living world in the sea, from the simple molecules that support life to the complex interactions between individuals and populations of many species. The range of specialty areas is huge. There are marine biologists who study the genes of marine organisms, while others may study the growth of plants or behaviour of animals. Some adopt a larger perspective and study how entire marine ecosystems function.

PRACTICAL EXPERIENCE

You will spend substantial time conducting practical exercises on marine organisms, collecting real data from several marine environments and undertaking research projects onshore, in our aquarium facilities, or at sea. These specific skills will ensure that you have the relevant hands-on experience to make you competitive for jobs in marine biology.

STUDY PROGRAM

FIRST YEAR

First year includes general biology and chemistry, and specific marine science topics such as an introduction to marine biology and marine sciences, plus electives of your choice. Students who do not have a background in chemistry are able to choose introductory chemistry topics, making this specialisation available to those with no scientific background.

SECOND YEAR

Second year introduces animal diversity, marine ecology, coasts and oceans, genetics, evolution and biodiversity in dedicated topics, as well as providing fundamental scientific research skills in experimentation and statistics.

You will also get hands-on experience in field trips to investigate various coastal ecosystems.

THIRD YEAR

Third year examines marine and freshwater biology, marine mammals, birds and reptiles, fisheries biology, science and management, plant and algal diversity, conservation biology, and restoration ecology.

You will also carry out a research project in marine biology involving self-directed study in a specialisation of your choice.

HONOURS

The honours year provides you with additional skills and knowledge to pursue further scientific research or a career in a science-related field. You will undertake specialised courses and an individually supervised research project in an area that interests you.

MARINE BIOLOGY / AQUACULTURE DOUBLE SPECIALISATION

You can also apply for a double specialisation in marine biology and aquaculture (see separate entry).

COMBINED DEGREES

You can combine the Bachelor of Science (Marine Biology) with the Bachelor of Laws and Legal Practice or Laws and Legal Practice (Honours).

CAREER OPPORTUNITIES

Some potential occupations for graduates include marine biologist, marine and coastal community education officer, reef guide, oceans science project officer, marine policy officer, and marine parks scientist.

Potential employers include Australian Institute of Marine Science; GHD; Great Barrier Reef Marine Park Authority; Department of the Environment; Kangaroo Island Natural Resources Board; Department of Environment, Water and Natural Resources; and several universities.

For more information on careers services and potential career opportunities go to: flinders.edu.au/careers

FURTHER STUDY

Further study options include Master of Science (research) and PhD (research).

FIND OUT MORE

More course information can be found by navigating to the Bachelor of Science (Marine Biology) and Bachelor of Science (Honours) (Marine Biology) on our undergraduate courses page via: flinders.edu.au/courses/undergrad
Combines cutting-edge technical and theoretical knowledge with flexibility, allowing you to tailor your progress, skills and knowledge to suit your interests.

Provides opportunities to participate in exciting marine-based fieldwork, including field trips to the Lincoln Marine Science Centre.

Has a strong focus on global environmental issues related to the oceans and marine life.
BACHELOR OF SCIENCE
MARINE BIOLOGY/AQUACULTURE

PREREQUISITES
None

ASSUMED KNOWLEDGE
None

SATAC CODE
224281

2015 ATAR
70.45

GUARANTEED ENTRY ATAR
70.00

TAFELINK
Cert IV or above

BONUS POINTS
UEQ, LLM

STUDY PROGRAM
FIRST YEAR
First year provides you with an introduction to chemistry, marine biology and aquaculture.

SECOND YEAR
Second year introduces animal diversity, marine ecology, coasts and oceans, aquaculture nutrition and water quality, aquaculture systems and technology, genetics, evolution and biodiversity in dedicated topics. You will also get hands-on experience in field trips.

THIRD YEAR
Third year extends your learning in biology, plant and algal diversity, aquaculture reproduction, aquaculture health and product quality, aquaculture and fisheries as well as providing skills in entrepreneurship and small business. You will also carry out a research project in biology involving self-directed study in a specialisation of your choice.

HONOURS
The honours year provides you with additional skills and knowledge to pursue further scientific research or a career in a science-related field. You will undertake specialised courses and an individually supervised research project in an area that interests you.

CAREER OPPORTUNITIES
Some potential occupations for graduates include aquaculture development officer, marine biologist, fisheries and ecological research assistant, reef guide, predator prevention officer, and policy officer - invasive marine species program.

Potential employers include Department of Primary Industries and Regions SA; Australian Institute of Marine Science; Great Barrier Reef Marine Park Authority; Department of Agriculture; Petuna Seafood; and Department of Environment, Water and Natural Resources.

For more information on careers services and potential career opportunities go to: flinders.edu.au/careers

FURTHER STUDY
Further study options include Master of Science (research) and PhD (research).
THIS COURSE...

ENABLES YOU TO COMBINE STUDIES IN AQUACULTURAL PRODUCTION TECHNOLOGIES AND BUSINESS SKILLS WITH SCIENTIFIC STUDY OF THE DIVERSITY OF LIFE IN THE SEA

WILL PROVIDE YOU WITH INCREASED JOB OPPORTUNITIES AND EQUIP YOU TO TAKE UP POSITIONS IN EITHER THE RESEARCH OR APPLIED SCIENCE SECTORS

FIND OUT MORE

More course information can be found by navigating to the Bachelor of Science (Marine Biology/Aquaculture) and Bachelor of Science (Honours) (Marine Biology/Aquaculture) on our undergraduate courses page via: flinders.edu.au/courses/undergrad
NANOTECHNOLOGY AT FLINDERS

The Bachelor of Science (Nanotechnology) will equip you to be a part of the exciting world of nanotechnology, which many believe is the industrial revolution of the 21st century.

The course will give you a strong background in the basic sciences of physics, chemistry and biology. Your scientific studies are complemented by insights into business, enterprise management, commerce and economics, and legal issues such as intellectual property, all of which are vital components for any professional scientist working in business and industry.

Flinders was the first Australian university to offer an undergraduate degree in nanotechnology and we continue to set the pace in teaching innovation. For example, you will have the opportunity to participate in real-world industry-funded projects throughout your degree. Our expertise is underpinned by combined strengths in chemistry, biology and materials science and by the fact that we share our campus with a world-class medical centre. This overlap of expertise is unique.

Our teachers are also leading researchers who attract several million dollars each year in research funding and receive many invitations to present at national and international conferences. Flinders’ Professor Joe Shapter received a national Carrick Institute citation for his work in establishing this degree, and in 2009 received an Australian Learning and Teaching Council Award for Teaching Excellence. In 2010 Professor Joe Shapter was awarded South Australia’s Tertiary Science Educator of the Year Award at the South Australian Science Excellence Awards.

The course is also supported by the Flinders Centre for Nanoscale Science and Technology, where the research in nanotechnology at Flinders is gathered together. You will have first-hand experience in state-of-the art research, using some of the most modern instruments, some of which are unique to Australia.

Nanotechnology is science at the molecular level and is a growth industry with the potential to change the world.

STUDY PROGRAM

FIRST YEAR

In first year you will take chemistry and foundation nanotechnology topics. You will also take topics in your specialist stream:

- Biomedical nanotechnology: This stream includes extensive studies in chemistry and biology
- Quantum nanostructures: This stream has a stronger emphasis on physics, chemistry and mathematics

SECOND AND THIRD YEARS

In second and third years you will take some core topics, plus topics from your chosen stream.

HONOURS

The honours year provides you with additional skills and knowledge to pursue further scientific research or a career in a science-related field. If you continue to honours you will undertake specialised courses and an individually supervised research project.

Examples of some of the projects our students have been working on include novel solar cells, biosensors and membranes for water purification. One of our students was recently featured in The Advertiser and on the television science show SCOPE.

PRACTICAL EXPERIENCE

Throughout your degree you will also gain important practical experience starting from your first year. Our second year students have previously made their own solar cells and our third year students have investigated the use of nanotechnology in sunscreens and used biosensors to measure glucose in sports drinks.
THIS COURSE...

- EQUIPS YOU TO BE A PART OF ONE OF THE GROWTH INDUSTRIES OF THE 21ST CENTURY
- OFFERS TWO DISTINCT STREAMS, EACH WITH AN EXCITING ARRAY OF CAREER OPPORTUNITIES
- COMBINES NEW IDEAS AND TECHNOLOGIES WITH A THOROUGH GROUNDING IN THE CORE SCIENCES

“Work placements were my first experience in going out into the research field on my own. They showed me what working in research was going to be like, and also gave me hands-on experience with the instruments to help apply and integrate my learning. This not only helped prepare me for the research field, but confirmed my research direction. Nanotechnology at Flinders has trained me to channel my passion for science into new scientific research.”

Jason Ong
FLINDERS NANOTECHNOLOGY GRADUATE
BACHELOR OF
MATHEMATICAL SCIENCES
3 PT

PREREQUISITES
Yes*

ASSUMED KNOWLEDGE
None

SATA CODE
224631

2015 ATAR
72.05

GUARANTEED ENTRY ATAR
70.00

TAFELINK
Cert IV or above

BONUS POINTS
UEQ, LLM

BACHELOR OF
MATHEMATICAL SCIENCES (HONOURS)
4 PT

PREREQUISITES
Yes*

ASSUMED KNOWLEDGE
None

SATA CODE
224641

2015 ATAR
81.25

GUARANTEED ENTRY ATAR
80.00

TAFELINK
Diploma or above

BONUS POINTS
UEQ, LLM

* SACE stage 2 specialist mathematics, mathematical studies or equivalent

MATHMATICAL SCIENCES AT FLINDERS

The Bachelor of Mathematical Sciences is designed to give you a firm foundation in the principles and techniques of modern mathematics and also to explain how mathematics is applied and used to solve today’s problems.

You will have the opportunity to complete topics in other disciplines that use this applied mathematics such as medicine (in epidemiology), business (in economics), physics (mathematical physics) and the environment (such as groundwater modelling). Mathematics topics cover areas such as algebra, calculus, differential equations, analysis, probability, statistical science, discrete mathematics and numerical analysis.

Flinders University has a proud history of mathematics and statistics teaching and research, with Australia’s only Fields Medal winner – Professor Terence Tao – graduating from Flinders University.

In addition, Flinders University has recently established a Mathematical Sciences Laboratory which focuses on advances in pure and applied mathematics in our areas of strength including analysis; biomedical mathematics; continuum modelling and environmental applications; discrete mathematics, optimisation and operations research; and statistics and stochastic modelling.

Mathematics is a vital life skill and an essential component of a modern economy. It differs from many other disciplines in that it has no use-by date. New mathematical advances do not destroy or discredit existing results but rather build on these, providing new insights, capabilities and ultimately new technologies.

Prospective mathematical sciences students are urged to investigate the information and resources published by the Australian Mathematical Sciences Institute (AMSI), of which Flinders University is an Associate Member: amsi.org.au

STUDY PROGRAM

FIRST YEAR

In first year you will complete mathematics-focused topics which cover pure and applied mathematics, as well as topics in the concepts of applied statistics. You will also complete studies in professional skills and computer programming, and have room to choose two elective topics chosen from across the University. This combination of topics ensures you have a broad range of skills, which you will continue to develop throughout your degree.

SECOND AND THIRD YEARS

In second and third years you will continue your studies in applied and pure mathematics and continue to choose elective topics which interest you from a range of areas across the University. Mathematics topics cover areas such as analysis, differential equations, algebra, computer mathematics, numerical analysis, probability and statistical science.

HONOURS

Honours provides you with additional skills and knowledge to pursue further mathematical research or a career in a mathematics-related field. You will undertake specialised courses and an individually supervised research project. You are provided with the opportunity to understand the full process of mathematics through problems posed from fields often external to mathematics, the translation of these problems to mathematical statements, assessing the contribution from and impact on theory, developing practical solutions, and interpreting and implementing the solutions numerically in the context of the original source of the problem.

ACCREDITATION

The Australian Mathematical Society does not formally accredit university awards but does publish accreditation standards. Flinders University’s mathematical sciences degrees have been designed to exceed these standards.

ALTERNATIVE ENTRY PATHWAY

Flinders University provides a pathway if you have an interest in mathematics but have not completed the required prerequisite subjects for entry into the Bachelor of Mathematical Sciences. You are encouraged to apply for a Bachelor of Science where you can complete topics in mathematics fundamentals. Further advice and support can be provided about the best and fastest pathways to transfer into the Bachelor of Mathematical Sciences.

COMBINED DEGREES

You can combine the Bachelor of Mathematical Sciences with the Bachelor of Computer Science.

CAREER OPPORTUNITIES

Some potential occupations for graduates include graduate research analyst, trainee quantitative analyst, energy trading analyst, graduate air quality consultant, graduate meteorologist, and graduate underwriter.

Potential employers include Australian Bureau of Statistics, Australian Prudential Regulation Authority, Bureau of Meteorology, Deutsche Bank, Suncorp Group, and Origin.

For more information on careers services and potential career opportunities go to: flinders.edu.au/careers

FURTHER STUDY

Further study options include Master of Science (research) and PhD (research).

FIND OUT MORE

More course information can be found by navigating to the Bachelor of Mathematical Sciences and Bachelor of Mathematical Sciences (Honours) on our undergraduate courses page via: flinders.edu.au/courses/undergrad
TEACHES YOU HOW MATHEMATICS CAN BE USED TO SOLVE REAL-WORLD PROBLEMS

FOCUSES ON BOTH PURE AND APPLIED MATHEMATICS AND STATISTICS

IS DESIGNED TO PRODUCE INDUSTRY-FOCUSED GRADUATES WHO ARE IN DEMAND IN A RANGE OF CAREERS THAT USE MATHEMATICS

HAS BEEN DESIGNED TO EXCEED THE AUSTRALIAN MATHEMATICAL SOCIETY’S ACCREDITATION STANDARDS

“...The degree we now have was built from first principles and very deliberately ensures it gives good foundational coverage to all areas of mathematics. Although there’s a lean towards applied mathematics, to ensure that graduates are applications-familiar and ready for work in industry, this is not at the expense of students getting a sound and complete mathematical education.”

Associate Professor Alan Branford
DIRECTOR OF STUDIES IN MATHEMATICAL AND STATISTICS AT FLINDERS UNIVERSITY
ASSUMED KNOWLEDGE
Some courses assume that you will have certain knowledge and skills from previous study (e.g. SACE).

ATAR
Australian Tertiary Admission Rank. The ATAR selection rank listed for each course is the minimum year 12 rank in 2015 which guaranteed selection for applicants competing in the year 12 sub-quota. The ATAR selection rank includes any university equity and subject bonus points that may have been applied.

BACHELOR DEGREE
Normally a first tertiary-level degree – also known as an undergraduate degree.

COMBINED DEGREES
Two courses studied at the same time for which you receive two parchments upon successful completion, e.g. laws and legal practice/commerce. Cross-credit reduces the total time you study.

DOUBLE DEGREES
Two courses studied at the same time for which you receive one parchment upon successful completion, e.g. education/arts.

ELECTIVE/OPTION TOPICS
Topics in a study area of your interest which can be chosen in addition to core topics.

EXTERNAL STUDENT
A person undertaking all of their study online on either a full-time or a part-time basis.

GPA
Grade point average. Your GPA is a measure of your academic achievement at university based on your results for each topic studied.

HONOURS
A degree involving both coursework and a research thesis generally undertaken after an undergraduate degree and before a postgraduate research degree. Honours usually adds one year to the duration of a regular undergraduate degree and is either applied for separately or as part of an undergraduate degree with honours included.

IB
International baccalaureate. IB qualifications are recognised by Flinders for entry into undergraduate programs

LLM
SA Language, Literacy and Mathematics Bonus Scheme. Students who have successfully completed a secondary school subject in specific language, English and mathematics categories will be eligible for between two and four bonus points under the scheme (excludes Bachelor of Clinical Sciences/Doctor of Medicine applicants).

MODE
Mode refers to how a course is delivered. Most Flinders courses are delivered internally – i.e. on-campus; however, some are available externally or as a combination of both.

POSTGRADUATE COURSE
A university course studied after completion of an undergraduate degree.

PREREQUISITE
Some courses require you to have completed specific subjects in your previous study (e.g. SACE).

SACE
South Australian Certificate of Education. The SACE is awarded to South Australian students who successfully complete year 12.

SEMESTER
The academic year is divided into two semesters – usually late-February to mid-June, and late-July to November. Some individual topics are also available to study over the summer break.

STAT
Special Tertiary Admissions Test. You can sit the STAT if entering Flinders via the Adult Entry Scheme. The test is designed to assess your ability to study at university.

TOPIC
A subject studied as part of a degree program. Core topics are compulsory subjects that form the basis of a study program.

UEQ
SA Universities Equity Scheme. Students from certain specified secondary schools, and students from other schools who are able to demonstrate their individual disadvantage, are eligible for five bonus points under the scheme.

UNDERGRADUATE DEGREE
A first tertiary-level degree – also known as a bachelor degree.

UNIT
Each topic is given a weighting in units. Flinders topics are weighted in multiples of 4.5 units. Full-time students normally complete 18 units each semester, or 36 units a year.
ENTRY OPTIONS

COMPETITIVE ATAR ENTRY
The majority of year 12 applicants enter university via the traditional competitive entry method, where offers are made to eligible applicants with the highest ATARs until all places in the course are filled. The 2015 ATAR cut-offs for each course entry listed are provided only as a guide for 2016 entry and may change with the 2016 intake.

GUARANTEED ENTRY ATAR
Achieve an ATAR equal to or above the published guaranteed entry ATAR and you will be guaranteed a place at Flinders. All you need to do is ensure you have listed Flinders courses first in your preferences and you will be offered a place in the highest Flinders course preference that you are eligible for in 2016. More information can be found at: flinders.edu.au/guaranteedatar

BONUS POINTS
Bonus points may contribute to your ATAR when applying for university. Two bonus schemes are available for South Australian year 12 students applying for entry to Flinders in 2016: the SA Universities Equity Scheme and the SA Language, Literacy and Mathematics Bonus Scheme. More information about your eligibility for bonus points is available at: flinders.edu.au/bonuspoints

TAFE LINK
Flinders offers guaranteed entry to selected courses for applicants who have completed a TAFE/VET certificate IV or higher level qualification, so long as course prerequisites are met. Importantly, your TAFE/VET qualification does not need to be related to your selected area of study at Flinders. More information is available at: flinders.edu.au/tafelink

FOUNDATION STUDIES
The Foundation Studies Program has been designed to introduce you to university study in a supportive learning environment. Open to people from all backgrounds, the Foundation Studies Program provides a pathway to gain entry to degrees at Flinders University. For more information go to: flinders.edu.au/foundation

ADULT ENTRY
The Adult Entry Scheme enables people aged 18 years and over to apply to study at Flinders via the Special Tertiary Admissions Test (STAT). Applications are made via SATAC. Find out more at: flinders.edu.au/adultentry

ENTRY PATHWAYS
At Flinders we recognise that every prospective student is an individual and that what works for one might not be right for another. That’s why we provide various entry pathways into Flinders University and your preferred course, including uniTEST, Flinderslink, and TAFE SA dual offers. You are encouraged to explore your options and find the entry path that’s right for you at: flinders.edu.au/pathways

ENHANCE YOUR DEGREE

COMBINED DEGREES
A combined degree is a combination of two Flinders bachelor degrees. As a combined degree graduate you will gain two qualifications in just one to one-and-a-half years of extra study.

Our combined degree programs are designed to enhance your educational, academic and professional qualifications whilst minimising the cost and length of your studies. Flinders combined degrees allow you to undertake in-depth study in exciting combinations that aren’t usually available in single degrees. Many graduates believe that a combined degree gives them an advantage for employment.

More information on the combined degree options available for each course at Flinders can be found on the undergraduate course pages at: flinders.edu.au/courses/undergrad

HOW TO APPLY

Flinders offers two admissions cycles each year for undergraduate courses.

- **Semester 1** – February start. Applications open in August for commencement the following year.
- **Semester 2** – July start. Mid-year applications open in August for commencement in July the following year.

Applicants need to apply through the South Australian Tertiary Admissions Centre (SATAC): satac.edu.au

Not all courses are offered for semester 2 entry.

SUBSCRIBE FOR A CHANCE TO WIN PRIZES

Flinders Explorer is a great way to find out everything you need to know about studying at Flinders University. Flinders Explorer is an e-newsletter, written for students by students.

Our current students will provide tips, tell you their stories and share advice. Basically they will tell you what to expect and help you to decide which course best suits you because they’ve been where you are now.

Along the way, we will provide you with information on our courses, entry pathways, scholarships and reminders of upcoming events and important application dates.

Subscription is free and gives you the chance to win cool prizes like an iPad, shopping vouchers and movie, concert and event tickets.

Subscribe at: flinders.edu.au/explorer