Artefacts from the Repatriation General Hospital Excavation 2007

Figure 1: Assortment of plastic artefacts recovered during the 2007 excavation

Karen Alexander
December 24th 2008

This report has been produced as a part of the assessment for ARCH 8508 Directed Study in Archaeology, graduate topic in the Department of Archaeology, Flinders University
Executive Summary

This report has been produced by the author for the industry partners Repatriation General Hospital, Daw Park and Flinders University Department of Archaeology. It has been completed for the graduate topic ARCH 8508 ‘Directed Study in Archaeology’. This project has been supervised by Dr. Alice Gorman, Flinders University, Department of Archaeology.

This project has been conducted to provide an artefact analysis and interpretation, following the 2007 excavation of the Repatriation General Hospital grounds to locate air raid shelters built during the Second World War. This artefact analysis forms part of the ongoing archaeological research and excavation work at the hospital.

The main points considered in the analysis are:

• Do the artefacts relate to the construction or use of the air raid shelters?
• Do the artefacts relate to the period of hospital use during the Second World War?
• What can the artefacts tell us about the site?

The interpretation of the artefacts has found that:

• The artefacts are not linked to the air raid shelters or their construction
• The artefacts do not provide a positive date that links them to the Second World War, or Hospital use at that time
• The artefacts do contribute to the understanding of the changes and development of the Hospital over its history, particularly the recent past
Table of Contents

Executive Summary .. 2
Introduction .. 5
Literature Review .. 9
Methodology ... 15
Results and Discussion .. 18
 Diagnostic Analysis ... 18
 Statistical Analysis .. 22
 Discussion ... 27
Conclusion ... 31
Reference List ... 33

Table of Figures and Tables

Figure 1: Assortment of plastic artefacts recovered during the 2007 excavation 1
Figure 2: Map of the Repatriation General Hospital grounds ... 6
Figure 3: Aerial photograph of the RGH grounds showing the 2007 trench locations 6
Figure 4: Example of the ceramic material excavated ... 19
Figure 5: Artefact RGH 00806, from Trench 6 Context 5, one of the few ceramic artefacts with an identifiable pattern ... 19
Figure 6: Example of the glass artefacts excavated ... 20
Figure 7: Artefact RGH 00917, from Trench 8, one of the few glass fragments displaying a maker’s mark ... 21
Figure 8: Piece of animal bone. Artefact RGH 00288, from Trench 3 Context 6 22
Figure 9: Graph showing the number of artefacts of each material type 24
Figure 10: Graph showing the number of artefacts in each trench 25
Figure 11: Graph showing the distribution of artefacts throughout the excavation site 26
Figure 12: Piece of brick excavated from Trench 3 Context 4 ... 28
Figure 13: Examples of metal artefacts relating to building materials 28

Table 1: Number of Artefacts of each Material Type ... 23
Table 2: Number of Artefacts in each Trench .. 24
Table 3: Distribution of Artefacts in Trenches .. 26
Introduction

The aim of this research project is to provide an analysis of the artefact material produced from the 2007 excavation of the grounds within the Repatriation General Hospital, Daw Park, South Australia. The analysis has been conducted to record basic attributes of the artefacts, to identify if any of the recovered material is dated to the Second World War and the use of air raid shelters at the Hospital, and to enable an interpretation of the artefacts to be formed.

There are two Industry Partners for this project. The first of these is the Flinders University Department of Archaeology, who was responsible for the 2007 excavation of the Repatriation General Hospital grounds. The second Industry Partner is the Repatriation General Hospital (RGH) itself. In 2007, the Department of Archaeology together with the Repatriation General Hospital undertook an excavation to locate the entrances of air raid shelters constructed in 1942. A map of the RGH grounds can be seen in Figure 2. The excavation formed a part of ongoing research into the air raid shelters by Hospital staff and the Department of Archaeology. A number of trenches were opened on the southeast side of the Hospital grounds – as shown in Figure 3 – and artefacts relating to different periods of use of the hospital grounds were recovered. These artefacts have been analysed for this directed study, and the results are presented in this report.
Figure 2: Map of the Repatriation General Hospital grounds (Last 1994, vii)

Figure 3: Aerial photograph of the RGH grounds showing the 2007 trench locations
The RGH was established in 1942 as a part of South Australia’s wartime measures to provide health services to injured returned and convalescing soldiers (Last 1994, 69). The land it occupies, between Daws Road, Goodwood Road, and Rockville Avenue – as indicated in Figure 2 – was originally part of an agricultural holding named Cudmore Farm. The farm belonged to the Dawes family, but was requisitioned by the Department of Repatriation (now the Department of Veteran Affairs) in 1940 to make way for the new military hospital (Last 1994, 70-73).

In the construction of the RGH, provisions were made to secure the hospital staff and patients in the event of an enemy attack on Adelaide during the Second World War. These provisions included the use of armoured glass in the nurses’ screens, concrete-reinforced walls and foundations, and the construction of slit trenches and two air raid shelters within the hospital grounds (Last 1994, 88; 223-224). The air raid shelters were located south west of the hospital, and it has long been speculated that the shelters were large enough to support an emergency operating theatre though no documentary evidence has been found to support this (Last 1994, 223). Interest in the air raid shelters amongst the current staff of the RGH led to the archaeological excavation of the RGH grounds in 2004 and 2007, and produced the artefacts which have been analysed for this report.
In the research and analysis conducted for this report, assistance has been provided by the Repatriation General Hospital – particularly from Ken Mayes – by Dr. Heather Burke of the Flinders University Department of Archaeology, and by my supervisor within the Flinders University Department of Archaeology, Dr. Alice Gorman. I would like to take this opportunity to acknowledge and thank them for their assistance and insight.
Literature Review

The framework for this report comes from a theoretical stance associated with modern material culture and post processual archaeology – namely that artefacts are a social product, arising from many different events in the past, and that the meanings associated with artefacts may be interpreted in different ways (Hodder 1991, 3). As the RGH artefacts fit within the recent historical period, it was felt that modern material culture studies and a post processual ideology was appropriate for shaping the analysis and interpretation.

The theoretical framework is supported by research pertinent to artefact analysis – both of specific material types, and archaeological artefact analysis in general. There are countless publications that address the topic of artefact analysis, and in this literature review some of the most notable references are identified, and their contribution to this project is addressed.

An important publication for setting the framework for this project is Hodder’s 1991 Reading the Past. This work addresses the importance of understanding the variable nature of interpretations in archaeology. Hodder points out that archaeology relies on the formation of categories for the processes of artefact recording and analysis, as well as archaeological research design, theories and other responsibilities. However, the formation
of all such categories occurs through the process of perception (Hodder 1991, 16). In short, interpretation of data is dependant on the archaeologist's perceptions and preconceived ideas. The understanding of this concept is of great importance when undertaking artefact analysis as it serves as a timely reminder that perceptions play a key role in how the artefact data is read, and how this affects the resulting interpretations.

Another fundamental resource for this project is Last's *The Repat: A Biography of Repatriation General Hospital (Daw Park) and A History of Repatriation Services in South Australia*. Last presents his history through the stories of the men and women who have served as staff and patients at the RGH. The book is intriguing and insightful as it meanders its way through the years of the twentieth century, and much is made of the Second World War in particular.

The history of the RGH during these early years of its construction and service in the Second World War is crucial to the background of this project. The 2007 excavation and artefact collection at the RGH was conducted to establish the whereabouts of the air raid shelters built beneath the RGH during the War.

Interestingly, Last barely mentions the air raid shelters throughout the volume, referring to them only in passing, or when discussing the
construction of the Hospital in general. Last comments that extra safety provisions were made in the latter part of the construction phase to improve the hospitals defences in case of enemy attack, including the installation of two air raid shelters, and the reinforcing of walls with concrete (Last 1994,88). However, this does little to positively identify the exact location or extent of the shelters. It is odd that in the countless stories of patients and staff that Last relays, he can add little more to the story of the shelters than the basic fact that they were built.

Read’s 2007 publication, *Artifact Classification: A Conceptual and Methodological Approach*, is a systematic look at the use of artefact classification in archaeological analysis. Read addresses topics such as pottery typologies, the historical background of artefact classification, frequency counts, recursive subdivision, and style and function traits. This resource has contributed considerably to the understanding of the artefact analysis theory necessary for a project of this nature, as well as the variety of approaches that may be taken. Read’s emphasis on the theory of classification highlights the role analytical approaches have on interpretation and archaeology as a whole: ‘analytical methods need to be framed by concordance among what we measure on artifacts, what were culturally salient dimensions for the production of artifacts, and our methods for organizing (in the form of typologies) the patterning that we analytically...
uncover’ (Read 2007, 44).

Useful guidelines for the analysis of ceramics come from Orton, Tyers and Vince’s 1993 publication *Pottery in Archaeology*. This has a far greater practical approach to Read’s work, and focuses on issues such as sorting, fabric analysis, form and decoration. Although Orton, Tyers and Vince’s work is focused on ceramics commonly found in Britain and Europe, the fundamental information presented is relevant to all ceramic analysis.

While this publication has valuable and interesting information on specialised analysis topics, such as fabric inclusions, it can be said that it is heavy on information. For a publication on pottery, it makes little use of illustrations and photographs, which can be the most effective way of identifying forms and decorations. However, it has been a useful resource for information on manufacturing techniques, particularly for clay working and firing (Orton, Tyers and Vince 1993, 114-131).

Shopland provided a single volume on artefact identification and analysis in her 2005 publication *Archaeological Finds: A Guide to Identification*. This is a particularly useful resource, as it breaks down each artefact material type, addressing its identification, likelihood and condition of survival, and the care of the artefacts.
Similar to Orton et al, this work focuses on artefacts found in Britain, and material types and artefacts have been included based on the frequency of recovery from archaeological sites in Britain (Shopland 2005, 8). However, this publication deals with material types from a very broad timeline – everything from lithic materials to porcelain and steel, making this resource useful outside of Britain also. Particularly significant to this project is the section Shopland provides on the identification of metals. The RGH artefacts include many metal objects, and Shopland gives details on corrosion and consequential colour changes (Shopland 2005, 14-37).

Another valuable source that looks at the theory and general concepts of artefact analysis is Ewen’s 2003 *Artifacts*, which is Volume 4 in the *Archaeologist’s Toolkit* series. Ewen discusses the process of artefact cleaning, sorting and labelling before outlining methods for conservation, reconstruction, and photographic recording in the first seven chapters of the book. The remainder of the volume is given over to material and data analysis, classification systems, proper storage techniques, and curation.

Ewen provides a good overview of ceramics, metal and glass – with particular attention given to iron nails and glass beads (Ewen 2003, 58-59; 61-63). The detail given to dating nails is particularly relevant to the RGH project, as many nails occur in the collection and little information regarding the identification and dating of these artefacts is given in other general
publications of this type.
Methodology

As this research project has been conducted as an artefact analysis, the methodology has centred on the analysis. Archival research was carried out on the analysis of particular artefact materials prior to working with the RGH artefacts in the Flinders University Archaeology Laboratory. This archival research was conducted through the Flinders University Central Library, and the Archaeology Laboratory reading materials.

In addition to studying reference materials, context sheets from the 2007 excavation were looked at, to gain a deeper understanding of the excavation site. A visit was also made to the RGH to gain first hand knowledge of the trench sites and their relationship to one another and the buildings of the RGH, in order to further this understanding. This visit took place on September 11th 2008, with the assistance of Ken Mayes, RGH Manager of Medical Administration. An unfinished copy of the 2007 excavation report was also provided by Dr Heather Burke to aid the research for this project.

The artefacts were initially rough sorted for analysis by material type. The categories of material were:

- Bone
- Asbestos / Plaster Board
- Metal
• Plastic
• Ceramic
• Glass
• Brick
• Miscellaneous

The materials were separated, while information about the artefacts’ area, trench and context locations was retained, and labelled on each artefact bag.

Artefacts were then individually recorded into a database, according to the standards set out by Heritage Victoria. For this, information concerning the trench, area, and context location was entered into the database, followed by the activities the artefacts were connected with. Other details including function, material type, colour, component represented, completeness, decoration types, weight, length, manufacturing technique and marks, and significance, together with a general description of each artefact was also entered into the database.

Statistical analysis was then carried out on the RGH artefacts, based on the information recorded in the database. This statistical analysis looked at the distribution of the artefacts across the excavation site, and which material types occurred most in which trenches. This information was then related back to the RGH buildings and the documented location of air raid shelters to
identify whether the artefacts were contemporary with the Second World War, or if they dated prior to the RGH or more recently. From the recorded information and statistical analysis, interpretations have been made about the artefact collection from the 2007 excavation.

Photographs have been taken of aesthetically significant or diagnostic artefacts using a Nikon D60 digital SLR camera and a Samsung S630 handheld digital camera. Illustrations have also been made of artefacts with a high aesthetic or diagnostic value, including decorations and makers' marks.
Results and Discussion

The results for the artefact analysis can be divided into two parts – the results of the diagnostic recording at the time of data entry into the artefact database, and the results of the statistical analysis.

Diagnostic Analysis

The artefacts recovered from the 2007 excavation were generally of a poor to very poor quality, and hold very little diagnostic features. While there was a variety of material types present in the assemblage, most of the artefacts were unidentifiable beyond the basic data of material type, component, colour, and dimensions. Although all were able to be weighed and have dimensions measured, a number weighed less than 0.1 gram, and were equally small in length, width and thickness. Most of the metal artefacts were too heavily corroded to be recognised, although many nails still retained heads, which helped in their identification.
Few ceramic pieces had decorations, and of those that did, most could not be identified as the sherds were too small to show much of the transfer patterns, as can be seen in the example of ceramic artefacts in Figure 4. However, Stanbury's 2003 *The Barque Eglinton – Wrecked Western Australia* and Brooks' 2005 *An Archaeological Guide to British Ceramics in*
Australia were used to glean as much information as possible, and helped in the identification of three ceramic pieces, one of which can be seen above in Figure 5. This piece is decorated with what appears to be the “Rhine” pattern.

Likewise, the glass artefacts also had little diagnostic value. Many pieces of clear flat glass are present in the assemblage, which have been identified as window glass, but the majority of the glass excavated is curved, and of a variety of colours, as can be seen in Figure 6. Of these, very few have partial maker’s marks or other marks of identification, and none have complete makes. An example of one of these partial marks is provided in Figure 7. Consequently, a positive identification was not able to be provided for any of the glass material, despite consulting Tuckwell’s 1993 *A Guide to Collecting South Australian Chemist Bottles*, and Shueard and Tuckwell’s 1993 *Brewers and Aerated Water Manufacturers in South Australia 1836-1936*.

![Figure 6: Example of the glass artefacts excavated](image)
Figure 7: Artefact RGH 00917, from Trench 8, one of the few glass fragments displaying a maker’s mark

Although some of the bone material was able to be identified, such as the piece shown in Figure 8, some of it was in such poor condition that identification was not possible.Dating of the bone material was also not possible. The plastic material was in slightly better condition that much of the rest of the assemblage, and identification of artefacts was consequentially much easier.
Figure 8: Piece of animal bone. Artefact RGH 00288, from Trench 3 Context 6

In most cases, dates could not be ascertained for the artefacts in this assemblage. The artefacts either were too small to identify the represented object, and therefore obtain a date, or in too poor a condition to identify and date, although every effort has been made to provide identification and dating information in the time available.

Statistical Analysis

The statistical analysis has been conducted to facilitate interpretations of the excavation site as a whole, and to draw conclusions about the nature of the artefacts themselves. As has been noted on pages 15 and 16, there were eight material types in the artefact assemblage: bone, asbestos and plaster board, metal, ceramic, glass, brick, and miscellaneous materials. In total, 1036 artefacts were collected in the 2007 excavation. Of these, glass was the most numerous material present, making up more than half of the total number of artefacts. Metal artefacts were also numerous, while the remainder of the material types were evenly represented, as can be seen in Table 1, and its accompanying graph – Figure 3. Asbestos and plaster board are the least represented materials in the assemblage.

While the material types have a relatively even representation throughout the site, it is apparent that the artefacts themselves are concentrated in three trenches in particular. Trenches 3, 6, and 8 contained more than 77% of the
total artefacts, as demonstrated in Table 2 and Figure 4. In comparison trenches 9, 10, 11, 13 and 14 contained no artefacts at all. Interestingly, the three trenches with the highest concentration of artefacts are not in close proximity to each other, while trenches that are adjacent to these three have comparatively low or zero quantities of artefacts. This indicates that the artefacts are unevenly distributed throughout the site.

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Number of Artefacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>75</td>
</tr>
<tr>
<td>Asbestos / Plaster Board</td>
<td>9</td>
</tr>
<tr>
<td>Metal</td>
<td>114</td>
</tr>
<tr>
<td>Plastic</td>
<td>48</td>
</tr>
<tr>
<td>Ceramic</td>
<td>95</td>
</tr>
<tr>
<td>Glass</td>
<td>618</td>
</tr>
<tr>
<td>Brick</td>
<td>48</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>1036</td>
</tr>
</tbody>
</table>

Table 1: Number of Artefacts of each Material Type
Figure 9: Graph showing the number of artefacts of each material type

<table>
<thead>
<tr>
<th>Trench Number</th>
<th>Number of Artefacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>205</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>439</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>166</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Unknown</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>1036</td>
</tr>
</tbody>
</table>

Table 2: Number of Artefacts in each Trench
Within the three trenches with the highest concentration of artefacts, there is a good representation of most materials. Trench 3 contains the majority of the ceramic, as well as high levels of the asbestos and plaster board, metal, glass, brick and miscellaneous materials. Trench 6 contains more glass than any other trench, together with high levels of metal, plastic, ceramic, brick, and miscellaneous materials. Trench 8 contains most of the bone material and plastic, as well as large quantities of glass. Both Table 3 and Figure 5 give details for the distribution of artefacts throughout the trenches.

From the quantity and distribution of artefacts and the representation of material types throughout the excavation site, interpretations can be made about the nature of the artefacts and the area of the RGH that was excavated. These interpretations are considered in the discussion below.
<table>
<thead>
<tr>
<th>Material Type</th>
<th>Trench Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>1, 8</td>
</tr>
<tr>
<td>Asbestos / Plaster Board</td>
<td>2, 3</td>
</tr>
<tr>
<td>Metal</td>
<td>3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Plastic</td>
<td>6, 8</td>
</tr>
<tr>
<td>Ceramic</td>
<td>3, 6</td>
</tr>
<tr>
<td>Glass</td>
<td>1, 3, 5, 6, 8</td>
</tr>
<tr>
<td>Brick</td>
<td>3, 5, 6</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>2, 3, 5, 6</td>
</tr>
</tbody>
</table>

Table 3: Distribution of Artefacts in Trenches

Figure 11: Graph showing the distribution of artefacts throughout the excavation site
Discussion

The analysis of the RGH 2007 artefacts forms a part of the broader ongoing archaeological project at the Hospital, focused on locating the Second World War air raid shelters that were constructed beneath the hospital grounds. As such, the primary question to be asked in the artefact analysis is: Do the artefacts relate to the construction or use of the air raid shelters? The artefacts from the 2007 excavation include a lot of building material – particularly in Trench 5 and 7 – including nails, window glass, plaster board, asbestos, wall plaster, brick, and flooring material. Examples of the excavated building materials can be seen in Figures 12 and 13. However, none of this material can be positively attributed to the construction or use of air raid shelters – it could have come from any surrounding buildings in the hospital. It is also unlikely that a material such as window glass would have been used in the air raid shelters.

Because the majority of the artefacts are unable to be dated – at least at this point in time – it is difficult to say that the materials that are present directly relate to the Second World War. Of the datable artefacts present, the objects are either from the recent past, such as 1975 two cent and twenty cent coins and a 2004 five cent coin, or in the case of Willow and Rhine patterned ceramics, possibly from site use prior to the War. However, it cannot be discounted that much of the building materials recovered may relate either to the construction of the hospital in the 1940s, or to building improvements or
developments over the years. The presence of asbestos can be used as an indicator that those improvements and developments would have been prior to 1989 when asbestos ceased to be used in new Australian constructions (ABC 2008).

Figure 12: Piece of brick excavated from Trench 3 Context 4

Figure 13: Examples of metal artefacts relating to building materials

Although the volume of building materials in the artefact assemblage may be
explained by the ongoing construction and repair of buildings around the hospital, there is also a lot of ceramic, glass and bone in the collection. As was noted in the statistical analysis, glass makes up more than half of the artefacts recovered. The question may therefore be asked why these materials are so prevalent, and if they relate to specific buildings or areas in the RGH.

The majority of the ceramic artefacts have been recovered from Trench 3. According to Ken Mayes, the location of this trench was close to a brick structure that was situated in what is now Car Park 5. This structure was used as a gathering point and picnic spot by staff, patients and visitors to the RGH during the hospital’s early use (Mayes 2008, pers. comm.). This could perhaps account for the large quantities of ceramic found here, as most of it appears to be servingware, which could have been used for picnics or tea breaks, and been broken while in use outdoors.

The highest concentration of glass occurs in Trench 6 – as noted on page 25. It is interesting that so much glass is in this trench, as it was situated between an access path behind the RGH Vascular Hut and the fenced boundary of an adjoining property (Burke n.d, 62). It therefore doesn’t appear to have any particular connection with the structures of the RGH. As the glass from this trench is mostly coloured and clear bottle glass, it is likely that the location of this trench simply contains land fill. Unfortunately, it cannot be
determined if the bottle glass mainly comes from beverage or medicinal bottles, as the artefact fragments are too small to be diagnostically valuable.

The concentration of animal bone in Trench 8 provides two alternative interpretations. As the RGH land was an agricultural property prior to the construction of the RGH, it is possible that the large quantities of bone are a product of that period. However, as some of the bone show butcher marks, and as they were excavated together with large quantities of plastic and glass, the alternative interpretation that Trench 8 was in fact the site of a rubbish pit is more likely. This theory is supported by Burke in her excavation report, but no mention of rubbish pits is made by Last.

The most likely interpretation to be made of the 2007 RGH artefacts is that they form part of the land fill used throughout the grounds. As construction, landscaping, concreting and asphalting continued from the 1940s through to the 1980s, to provide additional buildings, gardens, pathways and car parks, the use of land fill would have been common at the RGH, and in this way the recovered artefacts would have made their way into the depositional locations. This would account for the general poor quality, small size, and low diagnostic value of the artefacts, as well as the even representation of material types throughout the site. However, even as land fill, the artefacts and this interpreted activity is able to tell us about the changing nature and regular upkeep of the hospital grounds.
Conclusion

This report has provided a brief historical background to the construction and used of the Repatriation General Hospital. It has also identified and reviewed some of the literature that contributes to the understanding of artefact analysis, specific material types, and also interpretation and classification theory. This has then been followed by a diagnostic and statistical analysis of the RGH 2007 artefacts. From the analysis, conclusions have been drawn about the quality of the artefacts, and interpretations have been made about the site as a whole.

The analysis found that while the artefacts recovered are mostly small, fragmentary pieces, with little diagnostic value, there was an even representation of material types throughout the site. Glass artefacts were the most numerous, followed by metal, ceramic and bone. Comparatively few brick, plastic, asbestos and plaster board, or miscellaneous artefacts were recovered.

The artefacts have been interpreted as making up a possible land fill that has
been utilised throughout the RGH grounds over the years, as construction and repair work has been carried out. They contribute to the broader picture of the Hospital as an important facility that has changed and adapted to the current needs of its patients, visitors and staff. Unfortunately, the artefacts do not seem to relate to the construction or use of the Second World War air raid shelters in a definitive way. This does not, however, mean that the shelters are no longer present in the archaeological record, merely that they have not yet been found.

The artefact analysis conducted for this project was a larger task than initially expected. More artefacts were recovered from the 2007 excavation than was realised when setting up this directed study. As a result, this project could easily have been used to form an Honours or Masters project, with the scope for more time to be spent on it to pin down dates and track down identification details through less common avenues of knowledge. As a directed study, time did not permit this. A recommendation to come from this project is therefore that future work to be done on these artefacts should perhaps be considered for an Honours or Masters thesis, whereby the full scope of the artefacts and site details can be explored.
Reference List

(Accessed 2nd December 2008)

Burke n.d., Untitled report on the Repatriation General Hospital 2007 archaeological excavation, Unpublished Report, Flinders University, Bedford Park

Ewen, C. R. 2003, Artifacts, Altamira Press, Walnut Creek, California

Last, P. 1994, The Repat: A Biography of Repatriation General Hospital (Daw Park) and A History of Repatriation Services in South Australia, Adelaide

Mayes, K. 11th September 2008, Personal Communication
