Construction to Demolition

An Archaeological Investigation into the Life Cycle of the Second Valley Boatsheds

By Steven Lake

Department of Archaeology
Flinders University
South Australia
2009
Declaration of Candidate

This thesis represents original research submitted for completion of a Masters in maritime archaeology. I certify that this study does not incorporate any research previously submitted for a degree or diploma without prior acknowledgement, or any material published or written by another person without due reference.

Signed,

Steven Charles Lake

31/05/09
Acknowledgements

I would like to thank the lecturers and staff in the Department of Archaeology, in particular my thesis supervisor, Ms. Jennifer McKinnon and the Archaeology technical officer, John Naumann. Ms McKinnon provided me with invaluable guidance and support toward my research, providing informative feedback and advice throughout. Thanks also to John who’s assistance in field work preparation and advice made my life that much easier. I would also like to thank the students of the Maritime Archaeology and Archaeology programs at Flinders University. Those who constituted the various survey teams include Zach King, Victoria Baylem, Jenny Milani, Claire von Maltzahn, Louise Holt, Darren Kipping and Claire Dappert. These students each volunteered their free time to assist in various aspects of this research’s field work.

Many thanks to the South Australian Department of Transport, Energy and Infrastructure who granted access to an otherwise prohibited site. Without such access, this research could not have been conducted and the historical boatsheds would have faced demolition with no permanent documentation.

Finally, I would like to thank my family, particularly my parents whose patient support of my studies has insured my perseverance and successful completion of my Masters.

Thank you
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

- Introduction | 1 |
- Background | 1 |
- Research Questions | 4 |
- Significance of Research | 4 |
- Research Limitations | 7 |
- Chapter Summary | 8 |

Chapter 2: Theoretical Frameworks for Recreational Maritime Infrastructure

- Introduction | 10 |
- Site Formation Processes | 10 |
- Application of Site Formation Processes in Maritime Archaeology | 14 |
- Abandonment as a Theme | 15 |
- Summary | 17 |

Chapter 3: The Historical Overview of the Second Valley boatsheds

- Introduction | 18 |
Before the Boatsheds 20
The Harbourmaster and the First Boat on the “Island” 24
The First Sheds 25
The Boatsheds in Operation 28
The Boat and Winch System 30
Construction and Maintenance 31
Overnight Mooring 34
Vandalism 35
The Last Days of the Boatsheds 36
Summary 37

Chapter 4: Methodology 40

Introduction 40
Conducting the Historical Research 40
Terrestrial Survey 42
 Mud map and Initial Survey 43
 Documenting the Structures 46
 Photographic Survey 46
 Baseline and Offset 47
Inter-tidal zone archaeology 54
Underwater Survey 55
 Swim line Survey 56
 Arc Survey and Circle Search 57
 Grid System 61
Summary 63
Chapter 5: Documenting the Structures – An Archaeological Analysis of
Recreational Maritime Infrastructure at the Second Valley Boatsheds

Introduction 64
The Structures 64
Interpreting the Underwater Data 84
Site Formation Processes 85
Conclusion 90

Chapter 6: Discussion

Introduction 91

How did the Second Valley Boatsheds reach a State Necessary for
Demolition? How did the Evolution of Technology and
Government Policy affect the use-life of the Sheds? 91

Vandalism 92
Maintenance 93
Modern Health and Safety Regulations 94
Evolving Technology 97
Fisheries Acts 100
New Generation 102

The Second Valley Boatshed use-life 102

Were the Second Valley boatsheds abandoned? From what
perspective are they considered abandoned? 104

Chapter 7: Conclusion, Limitations, and Future Research Potential

Conclusion 107
Future Potential 108

References 110

Appendices 117

Appendix 1: The Second Valley Boatsheds site plan 117
Appendix 2: The Second Valley site plan legend 118
List of Figures

Figure 3.1: A satellite image of the Fleurieu Peninsula.

Figure 3.2: A close up of the island. Note the small white section on the island-this is an aerial view of the boatsheds.

Figure 3.3: A 1911 Land Office Plan of the marine Board reserve, the “island” section of land perpendicular to the Second Valley Jetty. (Courtesy of the Land Services Group, Government of South Australia: Department of Transport Energy and Infrastructure).

Figure 3.4: A 1929 Land Office Plan of the Gulf St Vincent, depicting the Second Valley “island” and Jetty as Marine Board Reserve. (Courtesy of the Land Services Group, Government of South Australia: Department of Transport Energy and Infrastructure).

Figure 3.5: This 1960s image clearly shows the enclosed boat shelters. The boat in the centre of the image is believed to be that of the Harbour Master, George Roper.

Figure 3.6: This 1935 image depicts the Second Valley Jetty with the ‘island’ located behind, note the lack of boatsheds, but the remnants of the stone wall used by the tram which served the wharf.

Figure 3.7: This is a 1955 photograph of the island shows the early boat shelters

Figure 3.8: The land lease still in use after a storm destroyed the boat shelter

Figure 3.9: This 1981 image shows sheds being repaired following storm damage when waves crash completely over the ‘island’.
Figure 3.10: The Second Valley sheds are transformed into a fishing village for the 1990 TV mini-series ‘Shadows of the Heart’.

Figure 3.11: The boatsheds in November 2008.

Figure 3.12: Here today gone tommorrow, the absent boatsheds April 2009.

Figure 4.1: Mud map of the Second valley bay area.

Figure 4.2: The first group of boatsheds (Group A), constructed into the southern end of the island.

Figure 4.3: The second group of boatsheds (Group B), constructed into the northern end of the island.

Figure 4.4: The baseline configuration at the Second Valley boatsheds site.

Figure 4.5: Steven and Zack attempting to locate the extent of the shed rails.

Figure 4.6: The arc survey methodology.

Figure 4.7: Surface marker buoys used to show surface location of underwater artefacts. Arrows have been used to aid in viewing the locations.

Figure 4.8: A map of plotted GPS coordinates showing the locations of the island, jetty and the underwater artefacts.

Figure 4.9: Using the grid system on the truck (left) and the wheel (right).

Figure 4.10: The truck set illustration and grid positioning, Grid 1 (left) Grid 2 (right).

Figure 4.11: The wheel grid positioning during the illustration process. The dotted line borders the wheel outline.

Figure 5.1: The Second Valley boatsheds site plan.

Figure 5.2: The collapsed shed.

Figure 5.3: Profile of Shed 3 exterior.
Figure 5.4: Profile of Shed 6 exterior.

Figure 5.5: Profile of Shed 12 exterior.

Figure 5.6: Rear of Shed 4, note the wooden panels painted green.

Figure 5.7: Sheds 9 (right) and 10 (left) roofs.

Figure 5.8: The visible extension to the housing capacity of Shed 2.

Figure 5.9: The rear of Group A sheds. Highlighted are the stone walls used on Sheds 2, 4, and 5.

Figure 5.10: The Group A shed rails. (1) This arrow depicts the concrete pillars used on the Shed 1 rails. (2) This arrow provides a further example of the concrete pillars used on site, this time seen on the shed 4 rails. (3) The arrow shows the concrete platform evident from shed 5.

Figure 5.11: The varying additions evident on shed rails. Shed 5-rail 9 (left) has a new metal fixing between two adjoining rail pieces (Left). The same rail also has several new metal bolting components (Centre). Note also the updated metal connection between rails 19 and 20 of Shed 1 (Right).

Figure 5.12: Shed 12 rails demonstrating the contrast between old and newer rails and the effects of oxidisation.

Figure 5.13: A stark contrast evident in the same rail section.

Figure 5.14: Shed 8 interior: This shed has been completely stripped including the engine for the winch.

Figure 5.15: Shed 9 interior. Evidently the items in this shed were not deemed important enough to remove prior to demolition.

Figure 5.16: Shed 6 interior.
Figure 5.17: This section of the site plan shows the gap between Sheds 8 and 9. Also note the unusual design of Sheds 9 and 10 which impede on each other’s space.

Figure 5.18: This section of the site plan demonstrates the additional walling cushioning the north wall of Shed 13.

Figure 5.19: The contrasting door design. Each utilise corrugated iron as the door with either metal or wood as the supporting frame.

Figure 5.20: This section of the site plan depicts the gap between the Group A and Group B sheds and the located flat area and slipway.

Figure 5.21: The located wheel.

Figure 5.22: The located truck set with a metre scale bar. The arrows depict the concreted wheels.

Figure 6.1: The graffiti stained rear of Shed 7

Figure 6.2: The Wirrina boat ramp April 2009.
List of Tables

Table 2.1: Site formation processes.
Table 2.2: The breadth of abandonment.
Table 4.1: Baseline A and Baseline B distances and compass bearings. The datum point information refers to their positioning along their respective baselines and their GPS coordinates.
Table 4.2: GPS coordinates for site features identified in Figure 4.8.
Table 5.1: The site formation processes displayed at the Second Valley boatshed site.
Table 6.1: Second Valley boatsheds use-life model.
Chapter 1: Introduction

Introduction

In the past, the study of shipwrecks and their related cultural material has been a primary focus of maritime archaeology both in Australia and abroad. The last ten to twenty years has witnessed an expansion to this scholarly field. Maritime archaeology now includes research in areas such as submerged aircraft (Jung, 1996), shore-based extraction sites such as as whaling and sealing sites (Staniforth and McGonigle, 2007), submerged habitation sites, both prehistoric (Dorch, et al, 1990) and historic (Hamilton, 1991), and studies into the remains of maritime infrastructure including ports (Frost, 1972), jetties (Khan, 2006) lighthouses (Holthof, 2008) and lifesaving stations (McKinnon et al, 2007). This thesis, will contribute to the growing body of knowledge on maritime infrastructure sites through the archaeological investigation of a set of historic boatsheds located in Second Valley, South Australia. Further, this study will consider the human behaviours associated with the use of these structures and their deliberate discard or abandonment within a maritime cultural context.

Background

In the recently published work, Ships Graveyards, Nathan Richards (2008) provides an in-depth consideration into the behaviours related to vessel discard and abandonment. Examples of this behaviour include such actions as the transformation of vessels into buildings or foundations, the use of disarticulated watercraft as construction material, the reuse of ship timbers, ship-breaking industries, ship’s graveyards, and the abandonment of a vessel during conflict (2002: 51-91). Through Richards’ analysis of archaeological sites such as these, he has provided a unique understanding of the way
human beings behave be it through economic, technological or social factors. Richards maintains that watercraft are not the only source to yield behavioural information as ‘...there are large amounts of data available concerning the official and illicit discard of any number of other types of material culture; including munitions, chemicals, dredge spoil, car bodies, scrap metal, medial supplies, aircraft, and other assorted equipment and refuse in the seas and oceans off Australia’ (Richards, 2002: 368).

The fisher’s boatsheds located in Second Valley near Yankalilla, South Australia (SA), offer a similar opportunity to investigate the notion of abandonment in a maritime context. This study aims to add to the already growing ‘discard’ and ‘abandonment’ theme in maritime archaeology through the development of a structure’s (boatshed) *use-life*.

The boatsheds at Second Valley are ingrained into the history of the local area. They are located on a rocky peninsula which forms from the Second Valley cliff, perpendicular to the current jetty. The structures themselves were private property but
were leased from the government. In December of 2008 the site included thirteen sheds, the majority of which dated to the 1950s and 1960s. Each shed was equipped with a pair of rails along which a fishing boat could be lowered into the water on its trolley and upon its return a winch and petrol engine was used to retrieve it (Blum, 1985: 142). It is believed that the sheds, generally speaking, were a place for housing recreational fishing boats. The role of recreational boats and the boathouses in the social and economic life of the Second Valley residents will be further explored in this thesis. Despite their function as recreational, these boathouses represent an important element to understanding the maritime culture landscape of this area and region.

Unfortunately, the Second Valley boatsheds are no longer in existence. According to the local government, these maritime structures were in a derelict state and as a result were selected for demolition (Bachmayer, 2008a; Hartley, 2008, letter, 13 November; Sallis, 2009, email, 15 April). A government ultimatum was offered to the owners; repair the boatsheds to meet the Department of Transport Health and Safety requirements or expect demolition of the structures (R Blum, 2009, personal communication, 09 April; T Weideman, 2009, personal communication, 31 March). A few determined owners maintained their fight for the continuance of their sheds and this pushed back the demolition dates, but in the end this did not halt their removal (T Weideman, 2009, personal communication, 31 March). After several delays in late 2008, a final date of February 2009 was selected for their demolition. It is interesting to note that only when faced with the threat of destruction, was the heritage value of the sheds and their place in Second Valley history voiced. This behaviour will be elaborated on later in this thesis.
Research Questions

The following research questions will be addressed in this study:

Main question:

- What can the investigation of the Second Valley boatsheds explain about their use-life and the maritime landscape and culture of Second Valley on the Fleurieu Peninsula?

Subsidiary Questions:

- How did the evolution of technology and government policy affect the use-life of the sheds?

- Were the Second Valley boatsheds abandoned? From what perspective can they be considered abandoned?

- How did the Second Valley boatsheds reach a state necessary for demolition?

The research questions require both historical and archaeological investigations of the Second Valley boatsheds. The historical component will review both the histories of Second Valley area and the boatsheds. Local histories will also be utilised providing a discussion concerning the use of the structures. These histories will be provided through previous boatshed owners and local residents. The archaeological component will document the shed structures and the environment upon which they are situated. The acquired information will then be reviewed in terms of social, technological and economical changes through the life of the structures.

Significance of Research

As Nash comments, maritime archaeology must have a ‘...greater synthesis with land based archaeology and the possible incorporation of some of the theoretical aspects of
this archaeology to the mutual benefit of both fields’ (Nash, 1994:26). This study hopes to contribute to this synthesis much like the previous works of Nathan Richards (2002) and Amer Khan (2006). Richards and Khan are two examples of bridging this gap between the two disciplines. Richards’ theoretical considerations throughout his research are based heavily upon site formation processes derived from terrestrial archaeology. His research in the archaeology of discarded or abandoned watercraft is a step towards an anthropological study of the maritime record. Richards states that anthropological approaches such as this are often ‘...scarce in Australian maritime archaeology’ (Richards, 2002: 24). Richards adds that his research is fundamentally ‘...an assessment of the behaviours associated with deliberate discard in a maritime context’ (2002: 2). Khan has also implemented site formation theories via his work on South Australian jetties. He too is concerned with the cultural behaviours associated with site formation. By reviewing site formation processes and integrating them into the study of the Second Valley boatsheds, this study attempts to move away from the traditional descriptive study and contribute to broader anthropological themes within maritime archaeology. This thesis is a continuation of the abandonment theme through the examination of human behaviours associated with abandonment of recreational boatsheds.

The research is also significant because it offers a relatively new study of material. This thesis intends to provide a fresh example of this thematic application, suggesting that after vessel discard (Richards 2002, 2008) and port related structures (Khan, 2006) comes a study of recreational maritime infrastructure. Some could argue that port or harbour archaeology would incorporate studies of recreational maritime infrastructure. However, there are few examples of this incorporation in maritime archaeology.
studies. It is the purpose of this paper to demonstrate that though related, recreational maritime infrastructure and port/harbour infrastructure are two different types of material culture. Ports and harbours represent places of trade, migration and their related maritime industries. As McCarthy defines it, port related structures in an Australian context can be, ‘Any facilities built for landing passengers and goods at any place designated for the loading and unloading of vessels’ (McCarthy (2002: 7 cited in Khan, 2006:03). Yet recreational boatsheds present a small community of independent pleasure or sustenance fishers. It would be ill advised to label the Second Valley boatsheds under the same research that has gone into analyses of ancient ports and harbours of the Mediterranean (such as Frost, 1972; Kingsley, 1996; Raban, 1992) or the more recent seventeenth century Port Royal (Hamilton and Woodward, 1984; Hamilton, 1991). Therefore, recreational maritime infrastructure deserves its own independent study by maritime archaeologists.

A limited amount of archaeological research has been conducted in regard to structures used as boathouses. This archaeological sub-discipline or theme termed boathouse archaeology has primarily included investigations into naval craft boat houses (Stylegar and Grimm, 2005). Authors of Boathouses in Northern Europe and the North Atlantic, Frans-Arne Stylegar and Oliver Grimm (2005), have provided a brief history of boathouse use. Historical sources have been identified regarding boathouses, such as Hutchinson’s research into King John’s thirteenth century fleet in England (Hutchinson 1994: 150, cited in Stylegar and Grimm, 2005: 254). Yet, there appears a distinct lack of archaeological analysis of boathouse structures.
Those archaeological boathouse investigations that have been conducted, have primarily been located in Northern Europe with only Norway’s boathouse research being well established (its roots linking back to the 1950s) (Stylegar and Grimm, 2005: 256, 260). The previous directions of such studies have been to determine the characteristics of the buildings in terms of social and functional terms (Stylegar and Grimm, 2005: 254). Further, the northern Europe study centred on nausts which were huge royal urban boathouses believed to belong to the Viking Age or Medieval times (Rolfsen, 1974: 12; Grimm, 2002: 105, cited in Stylegar and Grimm, 2005: 256). These structures provide a clear difference in terms of boathouse purpose and design compared with those exhibited by recreational fisher’s boatsheds. As Stylegar and Grimm (2005: 254) have pointed out, the ‘much more widespread ordinary shelters for fishing boats are disregarded’. The value of this research can be realised as it presents a new avenue of research on ordinary recreational boatsheds.

Research Limitations

Time and monetary constraints which are almost always a limitation of archaeological research have limited the extent to which this research has been completed. The threat of imminent demolition offered a narrow time-frame within which to conduct the archaeological survey. As a result, survey work commenced before adequate opportunity could grant detailed historical research of the site. This forced the investigation to take the form of a very basic survey noting only general features of the structures and the site. This approach signalled the lost opportunity to test the oral histories. Particular focus would have involved specific structures and reference to shed maintenance and the effects of vandalism and personal family histories.
The age of the boatsheds and subsequent lack of historical documentation must also be considered a limitation to this research. Locating information with regard to recreational maritime structures proved unsuccessful and consequently a heavy reliance upon oral histories was necessary. Though incredibly insightful and useful, oral histories alone have not afforded a conclusive or detailed history of the boatsheds.

Chapter Summary

The thesis design follows a basic structure with seven chapters outlining the archaeological theory, an historical overview, the methodology behind the archaeology conducted, followed by an interpretation of the data, a discussion, and a concluding chapter to finalise the study.

A theoretical framework has been offered in Chapter Two to allow for a lens through which the archaeological and historical data can be viewed. As noted above, ideas behind maritime abandonment and deliberate discard have been considered, as well as an analysis of site formation processes. The Second Valley boatsheds are then introduced in Chapter Three primarily through the use of local histories. The information gathered considers the site’s demolition in the twenty-first century including the evolution of technology and the introduction of SA Fisheries Acts.

The methodology of this study has been addressed in Chapter Four. To follow, there is an analysis of the archaeological data in Chapter Five. This is discussed in Chapter Six with relevant references to the historical documentation and local histories correlated from Chapter Three.
Each chapter following this introduction will contribute detail concerning the *use-life* of the sheds. This will be summarised in the concluding chapter, Chapter Seven. Within this chapter, the information obtained throughout the thesis has been reviewed and a final discussion is presented to the reader considering the original research questions. Finally, the limitations of this research are discussed and potential future research topics offered.
Chapter 2: Theoretical Frameworks for Recreational Maritime Infrastructure

Introduction

‘...archaeology has traditionally lagged some distance behind the cutting edge of cultural and social theory, and one could say that maritime archaeology has been some considerable distance behind archaeology generally in this respect’

(Staniforth, 2001b:42)

The lack of social theory behind maritime archaeology in Australia has been discussed by many over the last ten to fifteen years (Staniforth, 2001a, 2001b; Nash, 1994; Veth and McCarthy, 1999; Babbits and Tilburg, 1998). However, it is not the purpose or requirement of this thesis to deliberate over this lack of ‘theoretical sophistication’ (Staniforth, 2001a: 22). Instead, this chapter will consider the theme of abandonment via the vessel discard work of Nathan Richards (2002) and Michael Schiffer’s research into site formation theories (Schiffer, 1972, 1987, 1988, 1996; Rathje and Schiffer, 1982). Through a review of these two themes, this thesis will contribute to the growing interest in incorporating social theory in maritime archaeology studies. Schiffer’s Site formation process will be considered first and Richards and Khan’s application of site formation processes will follow.

Site Formation Processes

Michael Schiffer defines cultural formation processes as ‘…processes of human behaviour that affect or transform artefacts after their initial period of use in a given activity’ (1987: 7). Schiffer is one of the major theorists on site formation processes
and his numerous writings over the past twenty-five years have provided a comprehensive data set, which can be utilise to analyse archaeological data (Schiffer, 1972, 1987, 1988, 1996; Rathje and Schiffer, 1982). According to Schiffer, archaeologists will be faced with artefacts in two possible contexts; a systemic context or an archaeological context. Systemic contextual artefacts are part of activities within an adaptive system, whereas the archaeological contextual artefacts are those that have been deposited and are no longer involved in activities (Rathje and Schiffer, 1982: 106). He further asserts that the movement from one context to the other will affect the very nature of the evidence left for the archaeologist. It is the processes that govern these movements which allow us to arrive at the term cultural site formation processes in the archaeological record. These can ‘…alter the formal, spatial, frequency, and relational characteristics of artefacts, often drastically’ (Rathje and Schiffer, 1982:106). Schiffer identifies the stages behind site formation as:

Table 2.1: Site formation processes. (Adapted from Schiffer, 1972, 1987, 1988, 1996).

<table>
<thead>
<tr>
<th>Cultural Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reuse</td>
</tr>
<tr>
<td>2. Deposition</td>
</tr>
<tr>
<td>3. Reclamation</td>
</tr>
<tr>
<td>4. Disturbance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-cultural Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Environmental Processes</td>
</tr>
</tbody>
</table>

These stages of site formation processes will be reviewed for relevance to this research in the following paragraphs. They will be used in the construction of a use-life and thus should be introduced and described here adequately.
The reuse process is mainly associated with the recycling of items in their systemic context. It is this reuse that prolongs the life of an artefact and thus affects the state and time upon which it enters the archaeological record. Any alteration to cultural material before it becomes part of the archaeological context should be understood to avoid the misinterpretation of data (Rathje and Schiffer, 1982: 108).

Depositional processes represent the transition of an item/artefact from the systemic context to the archaeological context (Rathje and Schiffer, 1982: 110). Important aspects behind this process include the law of superposition which states that later deposits will overlie earlier ones. As Schiffer states, ‘…in most sites the majority of items the archaeologist has to work with were intentionally discarded. They had either worn out, been broken, were waste products, or were no longer considered useful’ (Rathje and Schiffer, 1982: 116). He continues, ‘although it is not unusual to see a person drop a penny, look at it, and then walk off, it is rarely the same case with a ten dollar bill’ (Rathje and Schiffer, 1982: 115). Hence, it is important to realise that the archaeological record is unlikely to hold a complete record of an activity.

Schiffer used ethnographical studies to identify seven major factors to consider in the depositional process. These factors include:

- the means of transportation available
- distance to the next place they can occupy
- intention of returning
- the activities anticipated in the next location
- the conditions of abandonment (rapid, slow, forced, or planned)
• the portability of the artefacts themselves
• the replacement cost of specific items

(Rathje and Schiffer, 1982: 119)

While the seven factors in consideration may have more value in the context of a habitation site, it is possible that these ideas can be utilised in activity areas. Such is the case in the maritime activity area of the Second Valley boatsheds. It is important to remember that the pre-disturbance survey approach used in this research diverges from Schiffer’s theory because it involves no excavation. Nevertheless, as will be discussed in Chapter Five, it is possible to transfer some of these theories to this research.

The third process identified is the **reclamation process**. In this case, artefacts are transferred back from an archaeological context to a systemic context. This will occur through a *scavenging process* generally committed just prior to site abandonment. To understand this point, Schiffer describes a past habitation site of the classic Maya period and the tomb robbing witnessed there (Rathje and Schiffer, 1982:121). Thus, reclamation processes must be considered a critical thought for further discussion of cultural site formation processes at the Second Valley boatsheds. Particularly as the “abandonment” occurred amidst the research project.

Disturbance process represents the fourth and final cultural process identified. This is simply a by-product process that occurs from activities with other goals; for instance, the construction of a building over the archaeological site which results in artefact migration and possible *reverse stratification* (Rathje and Schiffer, 1982: 123). In terms
of the Second Valley site survey, this process will play little role as the shed demolition occurred post-survey.

Having reviewed the possible cultural processes that can alter or affect the archaeological record, Schiffer then evaluates the possible non-human processes or environmental processes (Schiffer, 1972, 1987, 1988, 1996; Rathje and Schiffer, 1982). The concept behind these processes states that alterations can be made to the archaeological record via animals, climate changes or any other natural activity. It is these environmental processes that would have affected the cultural material at Second Valley during both its systemic and archaeological contexts. Schiffer later terms these cultural and non-cultural processes as C-transforms and N-transforms respectively (Schiffer, 1996).

Application of Site Formation Processes in Maritime Archaeology

Both Richards (2002) and Khan (2006) have applied site formation processes to their respective research. For instance, in the context of watercraft abandonment, Richards discusses the relevance of N-transform processes and C-transform processes to discarded vessels. According to Richards, N-transform processes have been prominent in maritime archaeology, particularly with the preoccupation of shipwreck disintegration processes. He argues that the use of site formation processes have primarily focused on the natural wrecking activity and disintegration processes. He further suggests that the cultural aspect of site formation theory has yet to be effectively developed (Richards, 2002: 39). This has unquestionably led Richards to principally concern his research with C-transformations (Richards, 2002: 42). He proceeds to implement the various cultural formation processes in regard to discarded
vessels, including the reuse, discard, abandonment, and reclamation processes. As a result, Richards (2002: 43) identifies three cultural (type C-transform processes) site formation processes concerning watercraft abandonment. These include the formation processes that are evidence of activities during use, evidence of the abandonment processes and finally evidence of activities post abandonment.

Khan has also identified C-transform processes in his study of jetty structures. For example, Khan (2006: 86) has identified the following characteristics a jetty will encompass:

- Patterning associated with abandonment processes is apparent in the archaeological record as a lack of specific portions of the structure. (see Port Willunga, Myponga, and Reeves Point Jetties). Jetties lacking decking, piles, or lateral bracing timbers suggest abandonment and disuse through a non-functional state of the structure.

As site formation processes can be applied to discarded vessels and jetty structures, so too can these theories be applied to recreational maritime infrastructure. It is a valuable theory when trying to investigate the use-life of the Second Valley boatsheds and in determining whether they were abandoned and from whose perspective.

Abandonment as a Theme

The notion of abandonment on archaeological sites is no new concept. It would be fair to say that the majority of sites that archaeologists study will have some element of
abandonment to factor into the discussion. Sites will usually comprise of a range of unwanted and discarded material, be it tools, machinery, scraps, or the site/structure itself. Though a common concept in archaeology, Nathan Richards suggests that it was not until ‘McCarthy’s work with the Western Australian Maritime Museum (WAMM) in the late 1970s and 1980s that marked the beginning of watercraft abandonment studies in Australia’ (Richards: 2002: 93). It is Richards who can be credited with developing the theme some two decades later. In doing so, he correlated abandonment with watercraft abandonment.

In his introduction entitled, ‘Degrees of Deliberation – the Breadth of Abandonment’, Richards identifies varying definitions of abandonment for describing discarded watercraft (Table 2.2).

Table 2.1: The breadth of abandonment. (Information taken from Richards, 2002: 7-9).

<table>
<thead>
<tr>
<th>Degree of Abandonment</th>
<th>Key features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catastrophic Abandonment</td>
<td>Shipwreck, unforeseen, immediate abandonment</td>
<td>Abandonment is a requirement for the preservation of life. Where staying with the vessel would result in death.</td>
</tr>
<tr>
<td>Consequential abandonment</td>
<td>Wrecking foreseen. E.g. the beaching of a vessel or removal of material before wrecking</td>
<td>The scuttling of a vessel in order to protect other vessels or structures from damage</td>
</tr>
<tr>
<td>Deliberate abandonment</td>
<td>Intentional discard</td>
<td>Planned nature of the act of abandonment</td>
</tr>
</tbody>
</table>

Though Khan does not delve into the theme in much depth when compared to Richards, he does consider abandonment in the use of jetty structures. In each author’s respective research, both employ site formation theories. In determining the use-life and eventual abandonment of the Second Valley sheds, site formation theories will therefore provide the theoretical underpinning to this thesis.

Summary

The theory encompassing this thesis is essentially site formation processes with a primary focus on abandonment processes. Schiffer’s research into site formation processes will provide an adequate framework with which to conduct studies into the human and natural behaviours associated with abandonment in the maritime context. The past maritime culture evident at Second Valley provides an opportunity to consider abandonment studies in a different light and to build up on the previous work of Richards and Khan. In considering the human behaviours associated with the use-life of these structures, it is proposed the data attained can provide further proof to the value of the maritime archaeological record.
Chapter 3: The Historical Overview of the Second Valley Boatsheds

‘The historical component has an essential part to play in the interpretation of sites’ (Green, 2004: 353)

Introduction

Second Valley is located at the southern end of the Fleurieu Peninsula, approximately 90 kilometres south of Adelaide (Figure 3.1). The boatsheds were constructed into a small rocky peninsula which juts out from the Second Valley coastal cliff opposite the jetty (Figure 3.2).

Figure 3.1: A satellite image of the Fleurieu Peninsula (Google Maps)

Figure 3.2: A close up of the island. Note the small white section on the island—this is an aerial view of the boatsheds. (Google Maps).
To the locals, this small rocky peninsula is referred to as an ‘island’, despite the presence of a thin land bridge connecting it to the beach. For the purpose of this thesis, the term ‘island’ will be used to reference the shed location rather than peninsular.

The local fisher’s boatsheds represent somewhat of a historic landmark for the Second Valley beach area and it is the purpose of this chapter to review the history of their construction, use and demolition. The history of Second Valley has been documented by local historian, Ron Blum (1985, 2002) in two editions of *The Second Valley: A History of Second Valley, South Australia*. These books have assisted this research greatly in determining the history of the area and the coastal environment. A great deal of detail can be accounted for regarding the jetty and wharf histories but unfortunately there is only a brief mention of the boatshed’s placement on the island:

‘A number of boatsheds are located on the island facing the jetty, each with a pair of rails along which the fishing boat may be lowered into the water on its trolley. The return to the boatshed is accomplished with a winch and petrol engine. Low tide is usually avoided for these operations’ (Blum, 1985:142).

The sheds have been given no fixed dates of construction, and have thus far warranted only a brief mention in Blum’s *Second Valley Today* chapter, suggesting they are not of historic concern to the area. This is not a criticism of the comprehensive works of Blum, but simply a means of indicating the lack of literature in supply for the boatsheds. Further, Royston Williams’s history of Yankalilla, *To find the Way: Yankalilla and District 1836-1986* (1985), provides no account of the Second Valley
historic boatsheds. The reason behind this shortage of documentation is likely due to the relatively recent construction of the structures (1950s/1960s) and their status as recreational boatsheds. They represent a modern history, a modern history which is seldom recorded during their builders’ lifespan.

When considering shipwrecks Larry Murphy explains that, ‘Most historical documents are not normally concerned with ships operating outside official sanctions’ (Murphy, cited in Gould [ed], 1983: 69). This notion may also apply to recreational maritime infrastructure. Little has been written about these boatsheds because they have not attained any historical significance to date and they are not official buildings which normally accumulate records. It has only been due to the threat of demolition that their heritage value and social significance has been appreciated. They represent a South Australian fishing landscape and seascape and are an icon for those who know of them and love them. Therefore, this thesis places heavy reliance on local oral histories when determining the shed’s use-life.

Having used the initial research provided in The Second Valley: A History of Second Valley, South Australia, it has been the objective of this research to correlate as much detail of the structures as possible. To do so, oral interviews were conducted with local Second Valley residents, shed owners and local historian himself, Ron Blum.

Before the Boatsheds

Prior to the construction of the boatsheds, the island was used as a base for a shipping wharf which served the local community (Blum, 2002: 35-36). A wooden structure was attached to the point of the island and stretched inland perpendicular to the
island’s shoreline. A tramway operated from the present day car park which rounded the base of the cliff and extended out to the wharf. This accommodated small tram trolleys which could be pushed to and from the unloading ships (Blum, 2009, personal communication, 09 April). The wharf which was constructed in 1855 was destroyed by storms in 1867, which caused the majority of the structure to be washed away (Blum, 2002:36). A jetty was built to the east to replace the wharf, however the stone wall associated with the wharf remained for many years after. Evidence of the original stone wall can still be seen today along the eastern edge where the island connects to the mainland.

The island and surrounding land amounts to an estimated seventeen acres and is plotted as a Marine Board Reserve as early as August of 1911 (Figure 3.3). A 1929 land survey plan notes this Reserve as Section 271 in the Hundred of Yankalilla (Figure 3.4). This establishes the ownership of the island with the South Australian government.
Figure 3.3: A 1911 Land Office Plan of the marine Board reserve, the ‘island’ section of land perpendicular to the Second Valley Jetty. (Courtesy of the Land Services Group, Government of South Australia: Department of Transport Energy and Infrastructure).
Figure 3.4: A 1929 Land Office Plan of the Gulf St Vincent, depicting the Second Valley ‘island’ and Jetty as Marine Board Reserve. (Courtesy of the Land Services Group, Government of South Australia: Department of Transport Energy and Infrastructure).
The Harbormaster and the First Boat on the ‘island’

According to Blum, the first boat on the island would have been the Harbormaster's, George Roper. The boat never had a shelter, instead it sat on a rubber tyre jinker which could be let down to the sea via a cable and winch. It ran over a concrete apron or slipway some of which can be still seen today (R Blum, 2009, email, 13 April). In Figure 3.5, Blum identifies the boat in the foreground as the Harbormaster’s boat.

Figure 3.5: This 1960s image clearly shows the enclosed boat shelters. The boat in the centre of the image is believed to be that of the Harbour Master, George Roper. (Photo-Ron Blum Collection).

Though this image dates to the 1960s, according to Blum, it is likely Roper’s boat was located on the island when Second Valley operated as a functional port, i.e. before the 1950s (R Blum, 2009, email, 13 April). George Roper was Harbormaster for many years and kept the Marine and Harbours Board boat on site between the sheds. Apparently, Mr. Roper experienced a fair few issues with his boat, ‘probably because it had to be left out in the open. It proved to be quite a ‘headache’ and the locals nicknamed the boat Aspro!’ (Blum, 1985: 143).
After speaking with several local residents who repeated the same information, it can be assumed that a flattened area stretching between the two groups of sheds was the Harbourmaster boat storage area (personal communication, Blum, Wiedeman, Olsson). This location will be discussed in later chapters.

The First Sheds

Unfortunately, no concrete information could be attained regarding precise dates for the shed construction. Oral interviews with locals have placed the date of the first shed structure on the island around the late 1940s to early 1950s (A Olsson, 2008, Personal Communication, 13 December). These dates were confirmed by the South Australian Department for Transport, Energy and Infrastructure (DTEI), the current land owner, and by the local historian (Sallis, 2009, email, 15 April; R Blum, 2009, personal communication, 09 April). Shed owner Tony Wiedeman suggests the construction date of the sheds are closer to 1915-1925 (T Wiedeman, 2009, personal communication, 31 March). He deducts this from a photograph in his collection showing a sailing vessel in the foreground of one of the boatsheds. According to Weideman, the vessel is similar to those used during Second Valley’s time as a working port indicating dates of about 1915-1925 (T Wiedeman, 2009, personal communication: 31 March). It is unfortunate that this image could not be located and viewed for analysis, however it is entirely likely that a vessel matching this description could have visited the Second Valley area any date between the late 1940s and early 1960s. Further, a 1935 photograph of the island shows no evidence of any boatshed structure (*Figure 3.6*). Therefore, it is likely that the bulk of the sheds were constructed after this date, lending support to the notion of the previous dates between the 1940s-1950s for the first structure.
The 1950s marked a period of advancement and growth in the South Australian economy. ‘Social changes inevitably came in a state which, like others in Australia, experienced the great post-war flow of immigration, the introduction of television, the improvements in travel and the impact of new patterns of living in other countries’ (Gibbs, 1984: 250). Royston Williams (1986: 190) signifies this surge of development in the area as a direct result of the Second World War concluding. This technological and economic growth created a suitable environment for the construction of recreational boatsheds for locals and holidaymakers alike.

![Figure 3.6](image-url)
Figure 3.6: This 1935 image depicts the Second Valley Jetty with the ‘island’ located behind. Note the lack of boatsheds, but the remnants of the stone wall used by the tram which served the wharf. (Photo: Blum, 2002:58).

The first boats on the island were protected by shelters rather than sheds (R Blum, 2009, email, 13 April). A further image with a date of 1955 was acquired showing one complete shed/shelter and a frame of a further shelter which is presumed to be under construction (*Figure 3.7*).
Though difficult to see, several boats are situated on the beach of the island. One shelter appears erected in the centre of the picture and, if closely viewed, a wooden structure can be seen to the left. This wooden structure is likely to have been constructed as a frame for another shelter. This evidence further suggests the bulk of the sheds were in fact constructed in the second half of the 1950s and the early 1960s. Returning to Figure 3.5, it shows that by the 1960s a number of shelters are present each enclosed to form sheds. These sheds were described as, ‘...simply clad in pine bark off-cuts which were easily obtained from the local Garrett's sawmill’ (R Blum, 2009, email, 13 April).

As briefly mentioned, the site upon which the sheds were constructed, is land which belongs to the DTEI, previously the Marine Harbours Board. The shed owners leased these allotments on an annual basis from the Department of Transport. Each lease went from where the shed stood to the water’s edge (T Wiedeman, 2009, personal communication, 31 March). According to Blum, the rent was ‘very low, perhaps 10 pounds (20 dollars)’ (R Blum, 2009, email, 13 April). Although inexpensive, the location was desirable; this spot was selected because the island offers a sheltered spot ‘protected from the southerlies’ (R Blum, personal communication, 09 April).
The purpose of these sheds seems an obvious one; to house recreational watercraft. However, it must be asked whether they were erected for any potential financial gains. According to Blum, it would have been difficult for residents to make a living off the land alone in the 1850s settlement period, therefore famers ‘naturally turned to fishing to feed their family’ (R Blum, 2009, personal communication, 09 April). Yet, Blum does not believe this was the case when these sheds were constructed in the 1950s and 1960s. Instead they were used to house boats for recreational fishing. In fact, after conducting oral histories, these sheds were found to be built by local recreational fishermen (R Blum, 2009, personal communication, 09 April; T Wiedeman, 2009, personal communication, 07 August). These are the same fishers who constructed the cliff top homes and beach shacks (R Blum, 2009, personal communication, 09 April). These shacks were mainly constructed in the 1950s (Blum, 1985:141) coinciding with the dates of construction for the boatsheds. Further, Blum states that many of the dwellings on the cliff top were for week-enders or holidaymakers (Blum, 1985:141). This suggests that though these structures were built by fishers, some were undoubtedly built by fishers who holidayed at Second Valley during the summer season, not just local residents. Ownership of the sheds is said to have ‘rarely changed hands’ but instead stayed in the original families (R Blum, 2009, personal communication, 09 April).

The Boatsheds in Operation

As Blum comments in his book, fishing has always been a popular pastime for the Second Valley locals and week-enders alike. One only needs to stroll down the jetty, to encounter a group of keen anglers (Blum, 1985:142). The sheds located on the opposite island offered a base for such activities. ‘For the whole of their life’ they have
been a base for recreational fishing (R Blum 2009, personal communication, 09 April). Only one owner, Devon Colgate is believed to have commercially fished from the boatsheds. He owned a shed and is known to have netted around the area on a commercial basis through a licence (R Blum, 2009, personal communication, 09 April). It is also known that Colgate owned the local Second Valley store (R Blum, 2009, personal communication, 09 April). Additionally, there have been suggestions that a certain black market in fish trading did take place which involved several of the shed owners from the 1960s to the 1980s (T Wiedeman, 2009, personal communication, 31 March; R Blum, 2009, personal communication, 09 April).

In regard to the types of fish sought and the areas fished, there were two main grounds offering differing fish species. These were the ‘two mile’ and ‘five mile’ (distance from Second Valley) fishing grounds (R Blum, 2009, email, 14 April). The two mile ground offered the main fishing for Whiting which could be caught along the seafloor. The five mile fishing ground was usually fished for Snapper. Blum recalls (2009, email, 14 April):

> Sometimes we caught leather jackets, rock cod and others much of which was thrown back. In the summer months when the Whiting were not biting, we fished for gar on the surface using cockles or "gents" on usually three hook below a pencil float. Burley was thrown in or sometimes put in a perforated 'burley box' and placed over the side of the boat in the water. The tide current left a trail for the fish to find. Burley was
usually bran, bread and perhaps a small amount of whale oil.

When that was banned in later years, tuna oil was substituted.

The Boat and Winch System

In simple terms, the original boats found in the sheds would have been putt-putt boats with an internal combustion engine like those found in early cars (T Wiedeman, 2009, personal communication, 31 March). In the early days of the sheds, the majority of the boats were wooden vessels of clinker construction. Fibreglass, a product of the 1960s, became more common as the decades passed (R Blum, 2009, personal communication, 09 April). Wiedeman (2009, personal communication, 31 March), who owned a shed in the last three years of its existence, remembers how for the twenty years prior to his ownership, the previous owner used an ‘old’ fibre-glassed speed boat to ‘...pleasure fish’ (2009, personal communication, 31 March).

Only a limited type of boats could operate from the boatsheds because of the size and depth of their hold and the launching facilities on site. These fishing vessels would therefore be limited to 3.5-4.5 m in length (R Blum, 2009, personal communication, 09 April). The launch and return of the fishing vessels was usually preferred at high tide (R Blum, 2009, personal communication, 09 April). This is likely to have been because of the methods used to launch and retrieve. The boats would sit on a trolley which ran on a pair of rails. For launching, it was a case of riding the winch clutch down the sloped rails until the boat trolley sat in the water. The boat could then be heaved off the trolley (which would remain in the water for the day). On return to the shed, the boat would need to be steered into the trolley. The fisher would then wade to shore to activate the winch. The early model winch was a single cylinder diesel
stationary engine, operated with a hand crank to start (T Wiedeman, 2009, personal communication, 31 March). This method was soon to be replaced by electric starters which negated the need to hand crank the motor into operation. In some cases, a remote system was implemented, though this was not a common feature. Blum recalls how shed owner Tommy King used a remote to activate a starter motor winch which pulled the boat up far enough to enable King to step out onto dry land. He then switched to the main motor to haul the boat up the rest of the way (R Blum, 2009, personal communication, 09 April). Apparently, King ‘...didn’t like getting his feet wet’ (R Blum, 2009, personal communication, 09 April).

Construction and Maintenance

The sheds were constructed in a haphazard fashion out of a variety of materials. The use of fence posts and large pieces of wood constituted the frame, with corrugated iron compiling the shell of the shelter (T Wiedeman, 2009, personal communication, 31 March). There were no building standards at the time so lease holders were not forced to comply with any building or safety regulations (R Blum, 2009, personal communication, 09 April). It is true some of the shed owners may have spent more in terms construction materials and maintenance, yet the basic shape and design did not differ greatly. The result was still a simple single story, square, wood and iron structure with a sloped roof. The gap between the sheds was a necessity because of the ‘convergence of the rails’ rather than to separate neighbours (R Blum, 2009, personal communication, 09 April).

Some sheds were adapted to accommodate the changing boats which needed housing. Raising the ceiling or increasing the depth have been some of the suggested changes
The concrete pathway to the boatsheds is thought to have been constructed in the 1950s by the commercial fisher, Devon Colgate (R Blum, 2009, email, 19 April).

Maintenance of the sheds was necessary, which usually involved just ‘placing a piece of corrugated iron over holes’ (R Blum, 2009, personal communication, 09 April). The rent, as previously mentioned, was believed to be around 10 pounds (20 dollars) at the time of construction, and last year it was thought to be just 66 dollars (60 dollars plus 10% GST). With the low costs and the lease being annual, there has ‘never been any incentive to spend big money to upgrade’ the sheds (R Blum, 2009, email, 13 April). When repairs were necessary, it is known that some shed owners sailed the materials around into the bay in a small craft, rather than hauling them around the narrow pathway (T Weidman, 2009, personal communication, 31 March).

This makeshift attitude is exemplified through the aftermath of a storm. After a huge storm in the 1980s, the water rose to the height of the jetty and up to the doors of the boatsheds (T Wiedeman, 2009, personal communication, 31 March). The storm claimed one shed, the only remains of which was a winch on the rocks. The lease holder, Mark Denton, continued to hold the lease until the remaining sheds were demolished, despite the fact that his shed had been gone for some time. This suggests that maintenance was not previously enforced or a concern. Figure 3.8 shows the missing shed still in operation as a boat storage area and Figure 3.9 presents the extent of the maintenance efforts required after storms.
Figure 3.8: The land lease still in use after a storm destroyed the boat shelter. (Courtesy of the South Australian Tourism Commission).

Figure 3.9: This 1981 image shows sheds being repaired following storm damage when waves crashed completely over the ‘island’. (Photo-Ron Blum Collection).
The resources used to perform maintenance depended very much ‘on what materials they could source’ at the time (T Wiedeman, 2009, personal communication, 31 March). In terms of the shed rails which the boat trolley would slide along, maintenance was not an easy task. In the corrosive environment of sea air, the iron rails needed regular replacement throughout the shed lifespan.

Another form of maintenance necessary on site was that of ‘preventative maintenance’ (R Blum, 2009, personal communication, 09 April). The boatsheds fell victim to heavy vandalism from about the 1970s onwards. The response of the boatshed community was to increase security, which in most cases is evident on each shed through the use of locks (T Wiedeman, 2009, personal communication, 31 March).

Overnight Mooring

Blum (1985:37) reports mooring buoys being installed in 1857 for shipping at the newly installed wharf to protect ships against the northerlies. There may also have been some sort of mooring device located in the bay associated with the boatsheds. After speaking with shed owner Anne Olsson (wife of Tony Wiedeman), she recalled shed owners mooring boats on buoys in the middle of the bay (A Olsson, 2008, personal communication: 13 December). Former shed owner Ron McKee also remembered how one of the locals, Bruce Wright, would moor his boat in the bay overnight and swim ashore. ‘On reflection he said that he seems to remember a big wheel on the shore at one time’ (R Blum, 2009, email, 19 April). It is possible that Wright placed this wheel in the bay and used it to attach a mooring line to his fishing vessel. Considering these possibilities there does appear potential for some buoys to have been located in the
bay. However their association with the sheds is not conclusive with historical data alone.

Vandalism

In conducting oral histories of the Second Valley boatsheds, one underlying theme that was a constant was vandalism. Vandalism became a real problem for the shed owners at Second Valley and can be credited as a major factor contributing to their demise. It is understood that during the early years (1950s-1960s) vandalism and theft was not an issue. Owners would safely leave their boats and belongings out in the open overnight on the rail slipway (T Weidman, 2009, personal communication, 31 March; R Blum, 2009, personal communication, 09 April). However, ‘escalating’ vandalism soon put an end to this trustful attitude (T Wiedeman, 2009, personal communication, 31 March). The increasing security in the area is likely to have been a gradual process in response to this escalation. As vandalism started to occur, boat owners would house their boats in their shed overnight and the ones left in the open would continue to get vandalised. Then an owner would lock his shed and again the others would do likewise for fear of their property being the target (T Wiedeman, 2009, personal communication, 31 March). By the end, some sheds were ‘built like steel fortresses’ to combat this enduring menace (R Blum, 2009, personal communication, 09 April). An example of such an approach would have been that of Bob Newman, who owned the shed closest to shore. He built an extra layer of corrugated iron supported with railway sleepers on the interior of his shed to try and stop vandalism. Blum and his wife Karen remember just how ‘horrible’ the situation was. Gone were the days when fishers were able to leave gear out overnight and it remain safe, instead fishers would even start to bring their motors back home with them (R Blum, 2009, personal communication, 09 April).
April). The 1970s has been recognized as the beginning of the continual vandalism of the sheds. This continued through to the 1990s and the 2000s (R Blum, 2009, personal communication, 09 April). Out of the boatsheds’ 60-70 year history, nearly 40 years were marred with vandalism.

The Last Days of the Boatsheds

By the time the Second Valley boatsheds were demolished, they had stood as part of the landscape for around 60-70 years. Towards the end of their use-life, only the ‘…odd boatshed was still being used by local fishers (R Blum, 2009, email, 14 April). Instead, the boatsheds found a new function serving as movie and television sets for TV mini-series *Shadows of the Heart* (1990) (*Figure 3.10*) and film *December Boys* (2007). The sheds were used for their visual character and historic appeal.

Figure 3.10: The Second Valley sheds are transformed into a fishing village for the 1990 TV mini-series ‘Shadows of the Heart’. (Blum, 2002:166).
According to an official DTEI, the sheds became a health and safety issue (I Hartley, 2008, letter, 13 November) and public access had to be restricted which would be followed by their eventual demolition. Wiedeman suggests this process had been ongoing for the last five years of the sheds’ life (T Wiedeman, 2009, personal communication, 31 March). By the time the sheds were demolished, at least a quarter of the sheds were either completely or partially in disrepair. They appeared neglected and ill-maintained prompting health and safety issues (R Blum, 2009, personal communication, 09 April). Only a handful of shed owners wished to fight the official condemnation, including Tony Wiedeman and Tim Doyle. Their aim was ‘to keep and maintain them for history,’ yet another use for the sheds (T Wiedeman, 2009, personal communication, 31 March). The sheds final act was to serve as the archaeological focus of this research as reported by the local newspaper (Bachmayor, 2008b). The sheds now have their very own Flickr internet web page celebrating their unique culture and aesthetic character (Flickr, 2009, viewed 10 May).

Summary

This chapter has outlined the history of the Second Valley boatsheds. It has demonstrated that the sheds went through several stages of construction, use, misuse, damage, rebuilding, fame and demolition. The Second Valley boatsheds stood for over half a century on a rocky peninsula, known to the locals as the ‘island’. They were constructed by fishers for fishers as a recreational haven for their pastime. Their end is a sad, but predictable one. Quite plainly ‘times changed’ (R Blum, 2009, personal communication, 09 April), and the new generations of owners did not wish to take the time associated with the up-keep of a boatshed. This can be attributed to a combination of interrelated reasons. The shed location made them vulnerable to vandalism and also
a chore to maintain. The limited watercraft that could operate from the site and the
time consuming efforts associated with launching and retrieval seem to be futile in
comparison to modern advances and concrete slipways. Ron Blum sums up the fate of
the sheds as there were ‘...easier ways to catch fish’ (R Blum, 2009, personal
communication, 09 April). The final Figures, *Figure 3.11* and *Figure 3.12*, display the
changing landscape of the island minus the historic boatsheds.
Figure 3.11: The boatsheds in November 2008. (Photos-Steven Lake 21/11/08).

Figure 3.12: Here today gone tomorrow, the absent boatsheds April 2009. (Photos-Steven Lake 09/04/09).
Chapter 4: Methodology

Introduction

Having considered the historical aspects of the Second Valley boatsheds in the previous chapter, this chapter will address the historical and archaeological methodology used during data recovery. The Second Valley boatsheds offer an example of a maritime material culture which encompasses terrestrial, inter-tidal and underwater components. In the past, some terrestrial archaeologists may have recorded a similar site to the waterline ignoring what material culture that may have been in the water, and maritime archaeologists would have recorded what was wet, stopping at the shoreline. The disciplines have evolved and now archaeological surveys are more comprehensive. Archaeological field work at the boatsheds required three surveys: a terrestrial survey, an inter-tidal survey and an underwater survey. This chapter is organised according to these three surveys. Firstly however, this chapter addresses the methods used during the historical research previously presented in Chapter Three. Details of all methodology used are described herein.

Conducting the Historical Research

National Parks Service has compiled a set of details that recorders must try to attain when recording an historic structure (McKee, 1970). These include:

- Name of the structure
- Location and address of the structure
- Ownership, occupancy, and present use
- Physical history, to the extent that is known or ascertainable
- Name of the original owner and of the subsequent owners (Chain of title)
• Date of erection
• Names of architect, designer, builder, suppliers, etc.
• Description, in whole or in part, of the original plan and construction of the structure
• Descriptions of known alterations and additions, with dates, name of architect, builder, etc.
• *Historical events* and persons associated with the structure
• *Sources of information* for the above facts
• *Name(s)* of the person compiling the history, and *date*
• In case the structure is important enough to have been well published, the physical and associated history may be briefly summarised, and a bibliography listed.

(McKee, 1970: 98)

Where possible this information was attained either through historical documentation or more often local histories. Unfortunately, due to the nature of the structures, finding conclusive or definitive data for each was not always possible. State and local libraries were visited, yet information concerning the Second Valley boatsheds was nonexistent. The Department of Transport’s Land Services Group was also utilised. This group, amongst other things, provides researchers and members of the public with access to documents concerning land deeds and titles for South Australia. This did uncover various land surveys of the island area, but provided no details of the structures situated on them. Further, modern recreational maritime structures have little place in the general histories of Second Valley, western Fleurieu Peninsula or South Australia and were missing from the following works: Blum (1985, 2002); Williams (1985); and
Parsons (1986). With this lack of documentation it was quickly realised the importance of gaining local information for the boatsheds. To increase public awareness of this study, the local Victor Harbour Times newspaper was contacted to promote the archaeology project to record the sheds. This resulted in an article being published inviting members of the public to visit the sheds between 12 and 16 December 2008 (the designated dates of archaeological survey). It was hoped the imminent demolition of the structures would inspire members of the public to share their knowledge and histories of the area. The resulting turnout, though small, was invaluable in correlating the research. Conferring with local residents afforded the opportunity to learn of the history of the sheds and also of other people capable of helping with the investigation, such as local historian Ron Blum.

Terrestrial Survey

The terrestrial survey of the site was completed over a five day period in December 2008. A small team of Flinders University Department of Archaeology students participated in the survey. The survey team was under pressure to document as much of the site as possible during this five day period as a result of several issues. First, access to the site was limited and required permits from the Department of Transport. The site had been fenced and locked after the decision was made to demolish the structures. Thus, access was restricted to specific time periods. Second, the research budget provided by the University would allow for only one week of field work. And finally, the sheds were set to be demolished in January/February. Therefore, the following objectives were compiled for the team to achieve in this time frame.
Survey objectives:

- Create a mud map of the site
- Document the boatsheds
- Produce a photographic record,
- Thoroughly record the structures including construction material and design
- Provide a scaled plan view site plan of entire area

Mud map and Initial Survey

The U.S. National Parks guidelines (McKee, 7-19:1970), *Recording Historic Buildings*, were employed for recording the standing structures. The documentation of the standing structures, their associated rails and the associated artefacts was conducted in two parts. One survey included photography of construction methods, materials and associated artefacts. The second survey included a systematic pedestrian survey of the immediate shed area.

In the initial stages of the terrestrial survey, a number of sketches were made while surveying the site and the surrounding area; these are often referred to as mud maps. Thirteen sheds in total were identified as was a space where another shed likely stood. Each shed had an associated pair of rails, but broken and disused rails also scattered the site. Three boat trolleys were on rails in open view, as well as a flat area between the two groups of sheds with what appeared the remnants of a concrete slipway sloping toward the water. *Figure 4.1* is the mud map produced from the initial survey. It illustrates the Second Valley coastal bay, jetty and island serving as two perpendiculars bordering the bay. This mud map provides sufficient detail to the observer of where the boatsheds are situated in relation to the Second Valley bay area.
This illustration was achieved using a compass and pacing method. This technique involves taking a compass bearing often referred to as foresight, to a proposed artefact or location and pacing out to it from a known position, such as a datum point. Once at the item’s location, a bearing back to the datum, known as a backsight, should be taken to insure accuracy. The difference between the two sights should be no greater or smaller than 180 degrees, though Burke and Smith suggest an error of two degrees would be acceptable (Burke and Smith, 2004). The artefact can then be placed onto the site plan using the angle and distance from the known datum. The compass and bearing method was utilised in this project during the preliminary survey and the mud map. With quick measurements and accurate compass bearings to various points along the way, a mud map was able to be drawn to scale. Figure 4.1 notes the bay area including the Second Valley jetty (right) and the shed locations on the island (left). The scale bar represents 10 m squares.
Figure 4.1: Mud Map of the Second Valley bay area.
Documenting the Structures

In documenting the structures, the Historic American Buildings Survey (HABS) was used (McKee, 1970). This involves two parts including a detailed analysis of the structure exterior and then a detailed description of the structure interior. The exterior component of the shed required general measurements such as length, width and height. Details of exterior construction materials were also noted, as was the roof and door designs. The shed rails, which for the purpose of this investigation have been included as part of the exterior of the shed structure, were also documented regarding condition and their ability to perform their function. The detailed documentation of the interior of the sheds consisted of taking a closer look at the construction methods and design. Maintenance, construction methods and materials were also documented with a specific interest in locating any modern repairs.

Photographic Survey

An Epson digital SLR camera was used for the terrestrial photography and a Canon Powershot with underwater housing was used for all underwater aspects of the site survey. Photography played a major part in the documentation of this site before its ultimate demolition. Where possible the author followed the guidelines provided by Green (2004:325) for good artefact photography. These include:

- The scale should be well placed so measurements can be taken of the object,
- The object should be evenly illuminated against a sensibly contrasting background with no harsh shadows obscuring the profile,
- The view should be symmetrical about the major axes of the object, and
- The object and the photograph should be able to be easily identified.
All artefacts and structural elements of the site were photographed with scales for a visual reference.

The purpose of the photographic survey was to complement the HABS documentation of the sheds. Thus, these photos related to the specific exterior and interior components of the shed structures. This included the various interior structures or framing of the differing shed walls and ceiling, demonstrating the varying forms of materials and methods used in their design. Specific photos were also needed to show the degrees of rail deterioration and shed abandonment.

Baseline and Offset

Having created a mud map documenting the sheds in relation to the bay, an archaeological site plan was necessary. This site plan includes the boatsheds, their associated rails, boat trolleys and any associated material culture.

Baseline and offset surveys were the primary means of collecting data for the sites plan. This technique involves ‘measuring the location of features from an established baseline’ (Burke and Smith, 2004:96). This method is essentially the easiest and most utilised archaeological recording technique. Firstly, a tape is selected which is known to cover the survey area, or at least the bulk of the survey area. Then a suitable place is selected where the baseline is able to continue on a straight line. To ensure the tape is straight, a compass bearing can be taken from each supporting stake to the next, insuring the same bearing is noted. If a straight baseline is unattainable, simply note the change in the bearing to insure that this is noted when drafting the site plan. Once the baseline is set up correctly and level, offset measurements can be taken at a 90 degree angle to the baseline.
In illustrating the site plan, each boatshed was assigned a number and each group of sheds was given a letter. For example, Group A (Figure 4.2) consisted of Sheds 1-10, and Group B (Figure 4.3) consisted of the missing shed (10b) and Sheds 11-13. Then each pair of rails was given a number in relation to their shed location. For instance, Shed 1 had Rails 1 and 2, Shed 2 had Rails 3 and 4, and so on. This approach made for a quick and easy process without any confusion as to what was to be measured and plotted.

The site was effectively split in two allowing a more manageable operation. An area was selected just a few metres in front of Group A where the baseline could run the course of the sheds. This became known as Baseline A, which had datum points (wooden stakes) used to support the baseline and allow its level to be adjusted.

Consideration was made to include the majority of the site’s features where possible with the one baseline, however a further baseline was necessary. This second baseline, Baseline B, was connected to the end of Baseline A and headed in a northerly direction, past the end of Group B sheds. Table 4.1 and Figure 4.4 offer a visual aid to the baseline configuration with specific details regarding baseline and datum point distances and positioning.
Figure 4.2: The first group of boatsheds (Group A), constructed into the southern end of the island. (Photo – Steven Lake 18/01/09).
Figure 4.3: The second group of boatsheds (Group B), constructed into the northern end of the island. (Photo – Steven Lake 18/01/09).
Table 4.1: Baseline A and Baseline B distances and compass bearings. The datum point information refers to their positioning along their respective baselines and their GPS coordinates (WGS 84).

Baseline A

<table>
<thead>
<tr>
<th>Datum Point</th>
<th>Distance along baseline (metres)</th>
<th>Compass bearing (degrees) to next datum</th>
<th>GPS coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>28</td>
<td>0247422n 6066771e</td>
</tr>
<tr>
<td>2</td>
<td>12.78</td>
<td>28</td>
<td>0247415n 6066783e</td>
</tr>
<tr>
<td>3</td>
<td>33.06</td>
<td>28</td>
<td>0247405n 6066804e</td>
</tr>
<tr>
<td>4</td>
<td>37.61</td>
<td>---</td>
<td>0247404n 6066798e</td>
</tr>
</tbody>
</table>

Baseline B

<table>
<thead>
<tr>
<th>Datum Point</th>
<th>Distance along baseline (metres)</th>
<th>Compass bearing (degrees) to next datum</th>
<th>GPS coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>328</td>
<td>0247404n 6066798e</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>---</td>
<td>0247426n 6066833e</td>
</tr>
</tbody>
</table>
Figure 4.4: The baseline configuration at the Second Valley boatsheds site (Not to scale).
Following Burke and Smith’s advice (2004: 98), all effort was made to ensure the tape and line remained as taut and level as possible. This was achieved with the implementation of a bricklayer’s line level which allowed for maximum accuracy. By simply laying the baseline along the undulating surface the resulting sag would have provided unreliable readings. A plumb bob proved a reliable asset in maintaining accuracy decreasing any chance of measurements being increased through angled tapes.

To combat potential errors each measurement was mapped to scale on graph paper on site. In doing this, it could be known instantly if a measurement was off and it could be corrected. If measurements persisted to be unresponsive then extra measurements were taken to the artefact in question. Due to the large nature of this site, a scale of 1:100 was selected, thus 1 cm on paper represented 1 m of the site. This scale allowed detail of all the structures, rails and trolleys and displayed their spatial relationship with one another.

The obvious limitation to the baseline and offset survey method is that it is not advised for large distances (Burke and Smith, 2004: 97). Several techniques have been suggested offering tips to ensure a 90 degree angle is kept for artefacts beyond 3m from the baseline. For instance the triangulation or trilateration methods have been suggested (Burke and Smith, 2004: 98). However, during this field work these techniques were not implemented. Instead, other precautions were employed and found to be more than adequate when drafting the site plan. For instance, a plumb bob was used to keep the offset tape at a constant horizontal and a right angle was assured through the use of the large A3 slate which acted as a perfect straight edge to measure
from. The accuracy of data may at times be a greater distance than Burke and Smith’s acceptable 3-4 cm (2004: 97). However, in using the 1:100 scale the few centimetres lost or gained during measuring did not alter the site plan in any way.

The flattened area between the two sets of sheds would not comfortably allow baseline offset measurements from either baseline. Therefore, the details of the area including the flat area, a winch and remnants of ferrous metal embedded in concrete required the compass and pacing method. The ease of terrain and short distances permitted the use of a tape measure which would offer greater accuracy. The use of back bearings aided in calculating the compass bearing to each item, and the plumb bob once again insured a horizontal line was kept.

Inter-tidal zone archaeology

This survey was a continuation of the previous terrestrial survey. The tidal range which equated to approximately 10 m of water movement made it difficult to record the extent of the rails without getting wet. Therefore, during the terrestrial survey it was decided to stop at the water’s edge. To do so, a rope was tied to the rails running parallel to the sheds at approximately the mid-tide mark. From that point wetsuits and masks were required. The survey objectives for the inter-tidal work included locating and documenting the ends of the rails and documenting any associated artefacts. For the inter-tidal zone survey, the baseline offset technique was utilized. Extra care and attention was placed on insuring a 90 degree angle was achieved. To do this, four team members were on call to check the positioning of the tapes. Ensuring the line stayed horizontal was also of paramount concern particularly with the natural contour of the falling slipway. To do so, the large range pole (1.82 m) was utilised. The offset tape
measure was attached to top the range pole which stood over the proposed point to be measured, thus acting in a similar manner to a plumb bob. This provided much needed stability from which measurements could be taken. This approach was particularly important when locating the ends of the rails, see Figure 4.5.

![Steven and Zack attempting to locate the extent of the shed rails. (Photo-Victoria Baylem 15/12/08).](image)

Naturally, this method will result in a few small measurement errors due to sag in the line and angle in the offset. Yet, as discussed earlier, the scale in operation was 1:100, and so these marginal errors had no visible effect on the overall site plan.

Underwater Survey

To gain an accurate picture of the underwater cultural material associated with the boatsheds an underwater archaeological survey was necessary. In total, only three dives were needed to survey and document the enclosed bay area between the jetty and
the island. This area was selected due to its protected nature from the rough seas beyond the island and jetty bay. Not only was this area suitable for diving but it would also seem the logical place for fishers to moor their vessels. The bay presents itself as a protected enclosure next to the sheds away from the effects of the open ocean.

Diving occurred over a period of several months with the first dive in November of 2008, and the following two dives on 9 April of 2009. This was in part due to the terrestrial survey taking paramount and the subsequent data analysis. The objectives for the underwater survey included a systematic swim search to locate and position any associated artefacts.

Swim line Survey

To confirm comprehensive coverage of the underwater area, a swim line survey was chosen. This method required multiple divers to swim spaced at equal distances along a line and visually survey the seabed. Visibility and the terrain to be covered usually dictate the space between each of the team members. Markers can then be dropped by divers at points of interest over the area. Once the survey is completed, positional data for any located material culture should be conducted. This can be achieved through a range of manners with triangulation or the baseline and offset methods usually preferred.

The Second Valley bay area selected had a depth range from as little as 50 cm to just deeper than 3 m. A 50 m baseline was established running parallel to the boatsheds located approximately at the end of the boatsheds’ rails. The dive team each took a position on the tape at 5 m intervals and swam a course heading for the jetty. After 50
or so fin kicks the jetty became visible and the team would each move to the next set of intervals covering a new 15 m. Then the swim line divers headed back to the baseline on the opposite bearing. This process continued until the baseline tape had expired. The survey was terminated at 50 m as this would place the survey close to the end of the bay’s calm water. Three artefacts which may be associated with the sheds were located standing proud of the seabed. A ferrous pole, a large carriage wheel and a trolley wheel and truck set were all located within close proximity to each other. The objectives for the second and third dives were to relocate these artefacts using circle search and arc searches and map and photograph these artefacts in situ.

Arc Survey and Circle Search

Although not recommended for total coverage (Dean *et al* [eds], 1992: 134), the circle search is appropriate for relocating known objects proud of the seabed. The circle search relies on a graduated line being held at equal intervals by divers. The line is fixed or held at the midpoint while the search team swims in a circle with the line stretch taut. As with the swim line survey, when one transect or in this case 360 degree circle is completed, the divers move out to the next interval. As Smith suggests, this survey proves particularly reliable when trying to re-locate a site or feature from surface GPS coordinates (Smith, 2006:18) or in this case visual references.

The arc survey is an adaptation of the familiar circle search. Yet, instead of completing the circle, an arc pattern is all that is required. Once the arc has been completed, the divers move up the tape and swim in the reverse direction, see *Figure 4.6.*
This method focuses on what is in front of the divers when commencing the search from the central or swinging point. In similar respect to the benefits of the fan survey which has been suitably described by Smith (2006:16-17), the arc technique works very well off a beach or bay area when trying to re-locate a feature.

The arc survey was initially selected as the chosen method to relocate the previously identified artefacts. This was due to the fact that they were known to be located in the middle of the bay between the jetty and the island in approximately 2-3 m of water. On a perpendicular line running from the centre of the bay’s beach, the team snorkelled out past the rock and reef. The dive team arrived at a drop off point of 1.5 m. From this location, the zero point of the tape was attached to a weight belt via a cable tie ensuring that it would not impede the tape’s swinging ability. From here, the two person dive team opted for 5 m intervals to conduct the search. After the fourth transect, the trolley truck and wheel set was relocated.
Having previously established on the first dive the close proximity the artefacts shared, a circle search was then selected for use with the zero point now over the truck set. Once the zero point was established, the divers began a circular pattern in search of the remaining artefacts. The large carriage wheel was found lying only 10-15 m to the north. Each artefact was then marked on the surface using a surface marker buoy (Figure 4.7) and GPS coordinates were taken for each see Figure 4.8 and Table 4.2. Both the located artefacts appeared further encrusted with sea grass and silt than had been noticed on the first dive. For this reason, the team came to assume the ferrous pole’s location was hidden and was unfortunately not re-located during the two searches.

Figure 4.7: Surface marker buoys used to show surface location of underwater artefacts. Arrows have been used to aid in viewing the locations. (Photo-Steven Lake 09/04/09).
Figure 4.8: A map of plotted GPS coordinates showing the locations of the island, jetty and the underwater artefacts.

Table 4.2: GPS coordinates (WGS 84) for site features identified in Figure 4.8.

<table>
<thead>
<tr>
<th>Waypoint Number</th>
<th>Point Description</th>
<th>GPS Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>End of concrete ramp and the start of the of the beach</td>
<td>247538 6066703</td>
</tr>
<tr>
<td>004</td>
<td>Trolley truck and wheel set</td>
<td>247526 6066770</td>
</tr>
<tr>
<td>007</td>
<td>Carriage wheel</td>
<td>247524 6066786</td>
</tr>
<tr>
<td>010</td>
<td>End of Jetty</td>
<td>247570 6066789</td>
</tr>
<tr>
<td>013</td>
<td>The north east tip of the island</td>
<td>247434 6066859</td>
</tr>
<tr>
<td>016</td>
<td>Shed 10b winch</td>
<td>247407 6066824</td>
</tr>
</tbody>
</table>
Grid System

Grid systems offer reliable mapping tools, both on terrestrial and underwater sites (Smith, 2006: 23). There is no set size for a grid unit, but the size of the grid system will dictate the type and sizes of the vertical stabilisers which keep the unit horizontal (Smith, 2006: 23). Maintaining a horizontal unit is vitally important in assuring an accurate depiction of the artefact. The unit is placed over an artefact or area of a site in need of detailed sketching. Each grid should come equipped with a series of cross hairs - wires that form boxes across the grid. During the mapping process crosshairs provide instant scaling for illustration and allow for scaled drawings to be completed underwater, as demonstrated in *Figure 4.9*. Once the proposed area is completed, the grid can be moved across one unit space and the same process of levelling and mapping can take place. As Smith comments, ‘either the predetermined grid system or the more random grid system that ties back to a datum is infinitely expandable. Both can cover a site more than adequately, and both provide the needed rigid structure for detailed mapping’ (Smith, 2006:24).

Figure 4.9: Using the grid system on the truck (left) (Photo-Steven lake) and the wheel (right). (Photo-Zach King 09/04/09).
Having located the two artefacts in the second dive, the third dive was used to set up and level the unit over the truck set. A spirit bubble located on one of the unit’s corners enabled the divers to create a level platform from which to sketch. With the unit in place, the dive team was able to commence mapping immediately. The underwater sketch of the truck set can be seen in Figure 4.10.

![Figure 4.10: The truck set illustration and grid positioning, Grid 1 (left) Grid 2 (right).](image)

The wheel posed slightly more challenging due to its circular nature and its diameter. Four unit placements were required to gain complete coverage of the artefact due to its 1.41 m extent. Figure 4.11 displays these grid unit placements. The sketches were then placed into Adobe Illustrator to digitise the lines of the wheel.
Summary

This chapter has outlined the methodology behind the historical research and the archaeological surveys conducted at Second Valley. Three separate archaeological surveys were conducted: terrestrial, inter-tidal and underwater. The objectives of these surveys were to record and map the boatsheds and associated natural and cultural features. Several methods were used and have been described. The results of these surveys will be discussed further in the following chapter.
Chapter 5: Documenting the Structures – An Archaeological Analysis of Recreational Maritime Infrastructure at the Second Valley Boatsheds

The ultimate objective in analysis is to explain the significance of the artefacts in context of the site and then to attempt to determine their relevance in terms of history and society of the time (Green, 2004: 349)

Introduction

This chapter is aimed at providing a site description and archaeological analysis of the boatsheds via the application of site formation theories. When documenting historic structures, Burke and Smith (2004) have provided some useful thoughts. They consider amongst other things key elements such as the date and method of construction, and any alterations to the original structure. Individual elements such as the roof and doors and their construction methods are also necessary for documentation. Noting the condition of the sheds when surveying is also worthy of attention according to Burke and Smith (2004:176). These basic descriptions of the structures can be complimented by the HABS guidelines (McKee, 1970: 106-107), which as discussed in the previous chapter have been utilised to document the boatsheds. This research has utilised these two texts for the documentation of the Second Valley boatsheds and the results of which are to follow.

The Structures

Basic Description

Thirteen sheds split between two groups were noted on the site, each having an associated pair of rails. The first group (Group A) included 10 sheds and the second group (Group B) included 3 sheds with the remnants of one shed no longer extant. The sheds exhibited no ornamental features and each one was in need of serious
renovation. Upon arrival at the site, the condition of the sheds appeared derelict, with open doors and others propped shut with stones. The degree of neglect has no doubt been the consequence of the site’s restriction two months prior. The rails, which for the purpose of this research are defined as part of the structure, had in some places rusted and concreted and were no longer in working condition. Other shed rails remained in fairly good condition with the appearance of modifications within the last decade. The gap between the two sets of sheds was necessary to accommodate the line of the rails.

To gain an overall site impression see Figure 5.1 or Appendix 1 and 2.

Figure 5.1: The Second Valley boatsheds site plan.
As mentioned above, the condition of the sheds ranged widely. For instance, Shed 7, a mess of tangled metal, had completely fallen in on itself (Figure 5.2).

![The collapsed shed. (Photo-Steven Lake 18/01/09).](image)

All that remained of the missing shed (10b) were concrete footings, empty holes where fence posts once stood and a few pieces of rail and corrugated metal. Other sheds had doors missing and gaping holes. Shed 6 looked the most recently maintained of all sheds with recent sheets of corrugated iron overlapping older iron sheets. Its winch appeared in good condition and the rails seemed capable of supporting a boat trolley. Yet its doors hung loosely from their hinges breaking away from the shed. Only one shed remained locked (Shed 4) though several others were wedged shut giving the appearance some of the sheds may have been used recently.

Shed roofs were all constructed from similar corrugated iron gently sloping to one side. Shed walls varied slightly although all were constructed with corrugated iron. The internal skeleton of the walls differed from merely wood off-cuts, to tree stumps,
to metal fencing and railway sleepers. This method of construction lends support to the oral histories which have suggested a very haphazard and a ‘that will do’ approach to building was utilized (R Blum, 2009, personal communication, 09 April; T Wiedeman, 2009, personal communication, 31 March).

Detailed description of Exterior

When analysing these sheds, it quickly became apparent that these structures were not constructed with any architectural standards or plans. Their construction appears purely to serve a purpose, in this case to keep fishing boats and associated equipment under cover and on site. The sheds were generally constructed using fence posts embedded into a concrete mix with sheets of corrugated iron attached to the exterior. A fence post supported the roof horizontally completing the three-sided frame. Looking back at *Figure 5.2*, it is possible to witness an example of this at the fore of the shed.

The Second Valley boatsheds each used a form of corrugated iron to form the exterior walling and roofing. Three differing types were exhibited as demonstrated in *Figure 5.3* through *Figure 5.5*. The majority (11) of the boatsheds utilised a similar design of corrugated iron to that used on Shed 12 (*Figure 5.5*). The remaining two designs of corrugated iron were present in only Shed 3 (*Figure 3.3*) and Shed 6 (*Figure 3.4*). One shed was an exception to the rule and did not use corrugated iron as a building material for each of its exterior walling and roofing. The rear of Shed 4 was constructed from a collection of wooden panels perhaps more likely part of a reused garden fence, see *figure 5.6*.
Figure 5.3: Profile of Shed 3 exterior. (Photo-Steven Lake 18/01/09).

Figure 5.4: Profile of Shed 6 exterior. (Photo-Steven Lake 18/01/09).
Figure 5.5: Profile of Shed 12 exterior. (Photo-Steven Lake 18/01/09).

Figure 5.6: Rear of shed 4, note the wooden panels painted green. (Photo-Steven Lake 13/12/08).
Construction and maintenance decisions appear to be sporadic and disorganized. The sourced material appears to be whatever was readily available regardless of colour or aesthetics. For instance, Shed 9 (Figure 5.7) demonstrates various off-cuts of sheet metal that have been added together to create the face of the shed. It would appear that when damage was sustained, any material which could be sourced would be used. This concurs with the local histories about shed construction. The sheet metal displayed varying degrees of rust and wear and tear suggesting maintenance was performed when required rather than being preventative maintenance.

Shed heights ranged from 3.22 m (Shed 2) to 2.50 m (Shed 4) with an average height of around 2.80 m. The average width of the sheds was measured at just over 3 m. Shed 9 was the widest at 4.57 m and the narrowest shed (Shed 4) measured only a mere 2.38 m. Shed depths also varied slightly. While the Group B sheds each revealed a depth of around 9 m each, the average depth of the Group A sheds did not exceed 8 m. Shed 3 provided the least amount of depth for a fishing vessel with a depth of only 6 m.

The roofs of these structures were designed with a slant to allow rain run-off. The majority slanted towards the rear of the sheds, however there were a few anomalies. Shed 9 represented a different design. The front two thirds of the shed had roofing which came to a point at its middle which then slanted towards its front face meaning run off would fall forward and to the sides, see Figure 5.7. The latter third of the shed which sits at least a half of a metre lower than the rest of the shed had its roof slanted to the rear of the shed. This construction suggests the latter third of this shed was an extension of its pre-existing structures. This is the case for Shed 10 as well.
Oral accounts suggest several extensions to the shed structures on site (R Blum, 2009, personal communication, 09 April). For example, Shed 2 is believed to have had its ceiling raised to accommodate a taller vessel. When analysing the structure, several of the cross beams (constituting the ceiling aspect of the three sided frame) sat lower than the height of the ceiling witnessed during the survey. This suggests that the height of the shed was originally lower and that it was indeed extended to accommodate a taller vessel.

Shed 2 (*Figure 5.8*) also provides an example of an extension aimed to increase the shed depth which would allow a longer vessel to be housed within. The image shows a later addition constructed to support the extension of the boatshed. Additional panels of corrugated iron can be seen protruding from the original structure to extend the structure’s depth.
According to Blum (2009, personal communication, 09 April), Shed 1 represents a further example of a possible shed lengthening. When viewing the rear of the Group A sheds (Figure 5.9), it is possible to see several brick walls constructed to support the base of the structures.
This created a level platform from which to build from and a level surface for the interior of the sheds. Shed 1 also exhibits stone wall foundations. These were located immediately behind the structure presumably erected to support a longer shed similar to that of Shed 2 (as seen in the right of Figure 5.8 and Figure 5.9). However, the shed does not extend back to this wall. It is undetermined whether the shed had since been reduced and the level platform remained, that a planned extension never happened, or that the shed was in fact reduced in size.

Each shed had an associated pair of rails. These varied in condition with at least half in need of serious maintenance or complete replacement. If not completely broken, then gaps in the line or rusted and twisted metal made operation impossible. The majority of the Group A shed rails rested atop small concrete pillars. These reduced the natural camber of the island providing the boat trolley ease of ascending and descending (Figure 5.10). Yet the Group B shed rails rested on the rocky terrain. Shed rails were held together through two methods, metal poles or railway sleepers. Each method generally depended on the height of which the rail stood from the ground. For instance, metal cross poling was used when the track rested atop of the concrete pillars. However, as the rail track came to rest on the ground further down the line, railway sleepers were also often utilised. Amongst the Group A sheds, Sheds 5 and 7 offer the only substantial remains of concrete platforms used to embed the rails (Shed 5 is also shown in Figure 5.10). The Group B sheds however all displayed evidence of this technique.
Retired rails littered the site, too heavy and awkward to be removed. Of the 13 standing sheds and one missing shed, only Sheds 5, 6, 8, 11, 12, and 13 had rails intact enough to permit a trolley to run on its track. Various rails did have the appearance of recent maintenance with new metal components possibly of stainless steel attached to them (Figure 5.11).

Figure 5.10: The Group A shed rails. (1) This arrow depicts the concrete pillars used on the Shed 1 rails. (2) This arrow provides a further example of the concrete pillars used on site, this time seen on the Shed 4 rails. (3) The arrow shows the concrete platform evident from Shed 5. (Photo-Steve Lake 15/12/09).

Figure 5.11: The varying additions evident on shed rails. Shed 5-rail 9 (left) has a new metal fixing between two adjoining rail pieces (Left). The same rail also has several new metal bolting components (Centre). Note also the updated metal connection between rails 19 and 20 of Shed 1 (Right). (Photos-Steven Lake 15/12/08).
The majority of the sheds also appeared to have replacement rails evident at the mid-high tide range (*Figure 5.12*). This can also be determined by the number of retired rails which lie just to the side of these newer additions. The location of these old rails can suggest the positioning of new rails (i.e. to immediate left or right rail) and provide a potential patterning of where replacement rails were most often required. The reason behind this mid-high tide location is likely due to the continued effects of oxidisation. The rails are constantly exposed to wet and dry phases allowing for the maximum effects of rust to take hold. Yet, the rails at low tide and those underwater at all times exhibit less signs of oxidisation. This is likely due to the continued wet state of the rails. The majority of rails in the water were covered with sea grass and silt which acts further to reduce the amount of oxygen capable of reacting with the ferrous metal.

Figure 5.12: Shed 12 rails demonstrating the contrast between old and newer rails and the effects of oxidisation. (Photo-Steven Lake 15/12/08).
This reaction is also evident on the top rail pieces leading from the sheds but to a lesser extent. The effects of constant moisture in the air have degraded the metal. Interestingly the same rail piece can show stark contrast in the effects of rust. Throughout the site there are several examples of single rail pieces at the low-mid tidal range where one end of the rail pieces can have varying degradation to the other end (Figure 5.13). This pattern can be seen throughout the site on several different rails at the same tidal height. It can be assumed that the lower half of the rail, i.e. the half in better condition, does not have as much time to react with the air as the upper half.

![Figure 5.13: A stark contrast evident in the same rail section. (Photos-Steven Lake 15/12/08).](image)

Detailed description of Interior:

The Second Valley boatsheds were emptied and no longer used because of their imminent demolition. The process of removal would have signalled the taking of anything important with little care in regard to shed damage. Once the owners felt they
had taken all that was sufficient, security concerns would not have existed. Therefore, since the site restriction by the DTEI in October of 2008, the site has been allowed to deteriorate further. This has had a significant impact on the site condition under analysis during the archaeological survey in December of the same year.

Each shed had a varying degree of clearance, from completely stripped (Figure 5.14) to what appeared an inaccessible trash dump (Figure 5.15). Three boatsheds even had vessels within them left for the demolition or vandals. The integrity of other sheds resulted in a limited analysis of the structure and interior components due to safety concerns. Yet, from those structurally sound shelters that remained, enough information could be attained for the documenting of the boatshed interiors.

![Figure 5.14: Shed 8 Interior: This shed has been completely stripped including the engine for the winch. (Photo-Zach King 13/12/08).]
From a distance, the boatsheds at Second Valley may appear the same but each structure contains subtle differences to its neighbour. The walls and ceiling for instance, may all be constructed from one or several pieces of sheet iron attached to frame. This frame consists of three sides, two sides providing the wall boundaries and the other acting as the ceiling support. Yet, this frame does differ considerably and by assessing the interior of the shelter this can be determined. As previously mentioned, Tony Weidman recalled how shed owners would source whatever materials were available (T Wiedeman, 2009, personal communication, 31 March). This certainly seems credible when taking into account the interior construction. For example, Shed 8 used metal poles to create the necessary three-sided frame. The majority of sheds on the other hand, used hard squared wooden fence posts to construct each side of the structure’s frame. All shed frame designs bare similar resemblance to one another but exhibit unique traits to their constructor’s specifications. This simple structure was then duplicated at least three times generally at the fore, middle and aft of the shed to
form the structural skeleton. Shed 4 and Shed 10 even used a tree trunk in their respective frame constructions.

The random method of construction continued in the form of the walls, ceilings and doors. All shed walls were unique in terms of how they were put together but again all used similar materials such as wood and metal. Shed 6 (Figure 5.16) provides the prime example how the varying materials were used during the interior wall construction.

![Figure 5.16: Shed 6 interior.](Photo-Zach King 13/12/08)

As the image demonstrates, the left side wall has been constructed from wooden panels, but the right sided wall has an additional layer of corrugated iron acting as the interior wall. The rear wall of the shed has metal fencing attached to the interior of the frame.

The notable exceptions in interior wall construction were evident in Sheds 9 and 10. These two shelters were detached from the bulk of Group A sheds forming their own
unit. Interestingly, they each impeded on the other’s shed area, as demonstrated in the site plan (Figure.5.17). Also noted during the survey was additional shed walling. Considering the high vandalism rate witnessed on site (R Blum, 2009, personal communication, 09 April; T Wiedeman, 2009, personal communication, 31 March), it can be presumed that this extra walling was an additional security measure put in place in an attempt to deter would-be vandals. Sheds 1, 2 and 13 each had a layer of corrugated iron attached to the inside of the shelter frame to accompany that which was attached to the outside. Shed 13 even demonstrated a cushioning zone of empty space between the two sets of corrugated walling, in effect creating an inner and outer frame, see Figure 5.18.

Figure 5.17: This section of the site plan shows the gap between Sheds 8 and 9. Also note the unusual design of Sheds 9 and 10 which impede on each other’s space.
Map 5.18: This section of the site plan demonstrates the additional walling cushioning the north wall of Shed 13.

Each shed had a single opening facing the water operated by two doors. The shed doors were constructed much the same way as the rest of the shed features. A wooden frame was assembled to the desired dimensions and one or multiple pieces of corrugated iron were then bolted or riveted to the frame (Figure 5.19). The doors usually operated with three hinges at the top, middle and bottom of the door (around 10 cm each in length), both opening outwards toward the sea to accommodate the vessel moving in and out.

Figure 5.19: The contrasting door design. Each utilise corrugated iron as the door with either metal, wood or a combination of both as the supporting frame. (Photos-Victoria Baylem 14/12/08).
No two shed ceilings shared the exact ceiling design, though there were similarities, particularly in construction materials. Wood or metal beams were again the favoured material. They attached to the shelter’s frame which was then screwed or bolted to the underside of a sheet of corrugated metal acting together to form the roof. The amount of structural support varies from shed to shed.

The flooring consisted of beach pebbles and seaweed compacted flat to allow for a level operating platform for the rails which usually ran the length of the shed. Shed 1 was the only example with a rectangular pit dug into the floor presumably to allow the fisher to perform maintenance on the bottom of their boat. Certain additional features were also noted within the structures. This included a number of shelves or shelving units seen in the majority of sheds. These were simple, usually a flat piece of wood attached to the shed wall frame. Other shed additions included basic cabinets, hooks and even a guttering system (evident on Sheds 9 and 13) which led to a water cylinder. Shed 2 had electrical outlets linked to a circuit board and battery.

The boat and winch system in operation was as described by the oral histories. At least half of the sheds still had boat trolleys that appeared in working condition, the others were either missing or rusted through. Several of the winches still had petrol engines attached that also appeared in working condition. Wire cable was still attached to Shed 1 and Shed 8 trolleys left abandoned at low tide. Nevertheless, of the sheds investigated, it is estimated that approximately only 4 or possibly 5 out of the 13 sheds were in full working condition at the time of demolition. Interestingly, all of the Group B sheds and shed rails displayed reasonable condition. Given the chance, it is possible this group could have met the safety standards set by the DTEI.
A flattened area and concrete slipway between the two sets of boatsheds was also noted. This is the known location of the Harbourmaster boat. However, further flat ground was located measuring a rectangular area approximately 5 m by 10m. Though not discussed by Blum, in returning to Figure 3.5 it is possible to see a boat shelter just to the right of the Harbourmaster’s. This is not to be mistaken for a shed from Group A as the flat area witnessed during the survey appears to continue into this once occupied space. Perhaps this may have been another boatshed structure now missing from the archaeological record. Ferrous poling remains were located in this area, embedded flush into the stone at the front of the flat rectangle (Figure 5.20). This may have been the left over remnants of the 1960s shelter, however no other posts or poling were located. Therefore, it is not totally conclusive as to whether a shelter existed on the flat area, but it would seem likely. The located slipway consisted of concrete and compacted rock and would seem to fit the Harbourmaster profile described in the oral histories (R Blum, 2009, personal communication, 09 April). Further, a discarded winch lay strewn to the side of the area. This could also have been used by the Harbourmaster.

Figure 5.20: This section of the site plan depicts the gap between the Group A and Group B sheds and the located flat area and slipway.
Interpreting the Underwater Data

During the underwater survey of the surrounding bay area, a wheel and a wheel truck set were discovered. It was identified during the historical research that possible mooring sites located in the bay may have been associated with the former wharf structure or for the use by a local fisherman. Having located the wheel and the truck set, it seems the wheel could possibly have been used as a mooring. The wheel (Figure 5.21) is wood constructed in a 12 spoke pattern. It was heavily concreted over its centre point and as a result joining methods could not be determined. The wheel provides the impression of a horse drawn cart carriage wheel, possibly thrown into the bay to moor small vessels overnight. It is highly unlikely this would have provided a stable and secure mooring point for larger vessels associated with the wharf or jetty structures. It is possible the wheel was deposited by a local fisher as advised via the oral histories. Yet, there was no evidence of a mooring chain that would have been necessary as an attachment to a surface buoy. Therefore, there can be no confirmation that this wheel was used as a mooring point or that it has any association with the boatsheds.

Figure 5.21: The located wheel. (Formatted in Adobe Illustrator).
In terms of the truck set located just to the south of the carriage wheel (Figure 5.22), this may well have been a wheel/truck set off one of the boatshed trolleys. Again, no mooring chain or line was located in the area and furthermore there did not appear any suitable points to tie a mooring line to the set. For these reasons it would indicate that the truck set was not used as a mooring option. This tends to lead to the thought that the truck set was either intentionally or accidently discarded into the bay.

![Figure 5.22: The located truck set with a metre scale bar. The arrows depict the concreted wheels. (Photo-Zach King 09/04/09).](image)

Site Formation Processes

The transformation of cultural material from its systemic context to an archaeological context is completed through a series of site formation processes. These have been identified in Table 2.1 located in Chapter Two as: cultural deposition, re-use, reclamation, disturbance and environmental processes. The relevance of cultural and non-cultural processes to recreational maritime infrastructure, in this case the Second Valley boatsheds, has been recognized as:
Table 5.1: The site formation processes displayed at the Second Valley boatshed site.

<table>
<thead>
<tr>
<th>Cultural Formation Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Deposition:</td>
</tr>
<tr>
<td>Construction</td>
</tr>
<tr>
<td>Maintenance</td>
</tr>
<tr>
<td>Abandonment</td>
</tr>
<tr>
<td>Reclamation Process</td>
</tr>
<tr>
<td>Salvage</td>
</tr>
<tr>
<td>Disturbance Process</td>
</tr>
<tr>
<td>Demolition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non Cultural Formation Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Process</td>
</tr>
<tr>
<td>Climate</td>
</tr>
</tbody>
</table>

Construction Process:

For the purpose of recreational maritime infrastructure, construction processes are those processes which transform the natural environment with the addition of cultural structures. In this case, both the levelling of the island to accommodate structures and the construction itself act to culturally alter the original landscape.

Maintenance Process:

Maintenance processes can be identified as modifications to the original structure. Oral histories provide direction for archaeological analysis and interpretation of the data in the archaeological record. The slight variance in shed material and construction between sheds can be attributed to the maintenance process and the circumstances of performing it. Whether through the impact of vandalism, the effects of storms, or general up-keep requirements, the maintenance of the sheds can be determined by certain factors. These include:
• the means of transportation available - i.e. movement of sourced materials,
• the portability of the materials themselves - i.e. the size of the sourced materials and accessing the sheds with the material, and
• the replacement cost of specific items - i.e. in comparison to the rest of the shed and the function it will fulfil.

(Taken from Schiffer, 1982: 119, 1987)

These factors refer to the behaviour associated with the maintenance of a shed and the financial and social value placed upon them. In view of the ever-present vandalism issue and the fact that the sheds are not considered a habitation site, it would be reasonable that little effort or expense would be put into a shelter.

Abandonment Process:
Abandonment demonstrated in the archaeological record of recreational maritime infrastructure refers to the lack of key functional components, such as walls, ceiling, doors and/or rails. This does not necessarily mean the complete lack of these components, rather that they have reached a degree of deterioration that forgoes their ability to perform their function. By the time the Second Valley boatsheds were restricted to access in October of 2008, several doors were missing or swinging open, the rails had corroded away and broken and the site was generally unkempt. Abandonment at Second Valley would have been a slow process and likely to have begun prior to site restriction.

Site restriction and demolition was a known event and in being so material of value could have been collected by shed owners. With this knowledge, it is possible to
identify the various abandonment deposition processes which affected the remaining cultural material in the archaeological record. The shed structures consisting of corrugated iron and timbers were all present in the archaeological record, none had been dismantled or materials re-used. Each shed still had a winch system in position. It is likely these systems for boat deployment were considered old fashioned and not required in the twenty-first century by recreational fishers. The task of removal of this heavy machinery from the island and the latter issue of storage would not justify the time and effort salvaging them.

There was little that remained of monetary value on the site. There were however three vessels still in sheds at time of site restriction. Unfortunately, these could not be examined; however with the poor condition of their associated shed rails it is likely the transportation of these vessels would not have been easy, even if the vessels could float. Aside from these vessels, the only things found in the archaeological record were pieces of trash and broken or discarded tools/materials that would cost little to replace. The effort associated with fully clearing a shed of all materials appeared to be a wasteful task in the mind of the owners. It is the purpose of the discussion in the following chapter to consider whether an abandonment process began before the site restriction.

Salvage Process:

Salvage processes exhibited at the Second Valley boatsheds include the reclamation of materials through both vandalism and owner salvage. As has been identified in Chapter Three, vandalism was a constant issue concerning the history of the sheds. There is little doubt this would have influenced artefacts’ location and their systemic
context. However, in terms of artefacts in their archaeological context, a *scavenging process* (Schiffer, 1982:121) is generally committed just prior to site abandonment. This is likely to have been done by the vandals and sheds owners wanting to take any remaining material of monetary or personal value. Vandals can also take some credit for the sheds’ poor interior condition, which no doubt were victim to defacement once public access was restricted to the area. The relative ease of access to the site and the sheds make for a very active site affecting what cultural material would remain for the archaeologist.

Demolition Process:

The Second Valley boatsheds were demolished in the second week of March of 2009. In this instance, demolition is identified as the removal of the structures and clearing of the resulting debris involving artefacts or pieces of structure from the site. The only remaining evidence of the sheds stands a solitary winch and some concrete footings.

Climate Process:

Patternings associated with environmental processes are, in this example, related to the impact of climate. Weather and tidal movements can be identified as the principle N-transforms affecting the Second Valley boatshed archaeological record. Constant scouring effects of pebbles and seaweed movement and the effects of wind damage, particularly in reference to defunct doors, are but two instances. There is also the continued effect of the chemical reaction, oxidisation, which forms rust on the ferrous components on site. However, the impact of major storms which have affected the Second Valley boatsheds throughout their history will have played a large role in altering the site formation. Huge storms have partially or completely destroyed some
of the structures. This resulted in the complete rebuilding of some boatsheds or as in the case of Shed 10b the premature end to its existence. Either way, climate processes can be directly linked to maintenance processes witnessed in site formation. All of these factors alter the formation of the archaeological record both during the sheds systemic context through to its archaeological context.

Conclusion

This chapter has provided the results of the archaeological field surveys and identified the site formation processes contributing to the site. It is clear that these structures were not of complex design but that they served their purpose. The owners were mostly thrifty but resourceful with their maintenance requirements in doing what was necessary. The abandonment process witnessed just prior to the site restriction would have greatly impacted the archaeological record and thus the results of the site survey. However, combining the historical research with the archaeological survey data will provide adequate information to sufficiently confront the research questions which are addressed in the discussion to follow.
Chapter 6: Discussion

Introduction

The subject of this research is an underappreciated and poorly documented cultural heritage, recreational maritime infrastructure. Research into the Second Valley boatsheds has offered an opportunity to explore the human behaviours related to the use-life of recreational fishing sheds. Unlike shipwrecks which have been described as a closed community (Muckelroy, 1978: 221, cited in Gould, 1983: 86), these boatsheds do not offer the so-called Pompeii or time-capsule effect. The Second Valley boatsheds represent a site under a constant state of evolution up to the point of demolition. Both the public and shed owners had access to the site even after site restriction (i.e. jump the fence), and this no doubt affected the archaeological record. Nevertheless, examining the use-life of this site and associated economic, technological, and social issues provides a clearer picture of human behaviours identifiable in the archaeological record. This chapter will revisit the original research questions posed in Chapter One. It will provide answers to these questions in the form of a discussion supported by both historical and archaeological data.

How did the Second Valley boatsheds reach a state necessary for demolition?

How did the evolution of technology and government policy affect the use-life of the sheds?

In a letter referring to the boatshed site, Ian Hartley, Manager of Property Planning and Management Service for the South Australian Department for Transport Environment and Infrastructure provided the following information:
Demolition has become necessary due to the derelict condition of the boatsheds, and the risk they pose to the public and the Minister for Transport (2008, letter, 13 November).

Ron Blum echoes this statement, suggesting the sheds failed because they became ‘unsafe’ (2009, personal communication, 09 April). The question must be asked, how did the boatsheds reach such a stage of neglect? This thesis has considers possibilities which are not entirely unrelated. These include the impact of vandalism, the efforts associated with maintenance, the issues over shed integrity and the modern health and safety requirements, the role of evolving technology, legislation changes such as the South Australian Fisheries Acts, and the change of shed ownership. The sheds’ demise can not be attributed to one singular cause, but instead a combination of these factors signalled their fate.

Vandalism

The impact of vandalism cannot be underestimated. The threat and security to personal property has a major part to play in the sheds’ demolition. The boatsheds changed from a place where boats and belongings could be left unsecured overnight to a place where, for fear of thievery, boat and winch motors could not be left unsecured (R Blum, 2009, personal communication, 09 April). Having begun in the 1970s (R Blum, personal communication, 09 April), this escalating problem resulted in new maintenance concerns and hassles associated with shed usage. This included the strengthening of walling and the replacing of vandal affected areas. Vandalism was not necessarily just thievery. The archaeological survey also noted general mistreatment to
the sheds. For instance, several of the sheds had been targeted with graffiti such as Shed 7 (Figure 6.1).

![Figure 6.1: The graffiti stained rear of Shed 7 (Photo-Steven lake 13/12/08)](image)

Maintenance

The continued maintenance efforts associated with vandalism and weather was another contributing factor to the sheds’ end. There were clear hassles with locating material and transporting it to the island. The positioning of the sheds on this rocky peninsula with restricted access certainly did not assist owners to conduct maintenance. One can also imagine how frustrating it would have been to repair a shed only for vandals to damage it again the following week.

There were also the continued repairs associated with storms. Each winter would see waves of water crash over the island resulting in maintenance requirements. At the start of each summer fishing season or after a storm, seaweed and rocks would cover the shed rails, which would result in an effort necessary to clear the tracks for the boat.
trolley (R Blum, 2009, personal communication, 09 April). There was also the impact of large storms to consider. Gale force winds harass the Second Valley coast every 10-20 years and have in the past caused considerable damage (R Blum, 2009, personal communication, 09 April). One such surge in the 1980s signalled the rise in water level to the height of the jetty and up to the doors of the boatsheds. The massive weight of this water destroyed quite a few of the doors and according to Wiedeman, signalled the ‘beginning of the end to the sheds’ allowing ‘more damage at a faster pace’ (2009, personal communication, 31 March).

The archaeological survey provided adequate examples of shed maintenance efforts associated with the impact of vandalism and weather. Added security measures such as double layered walling were noted, as was the extent to which replacement of corrugated iron sheets and sections were used. This data offers insight into the frequency of damage the boatsheds sustained through either vandalism or the environment.

Modern Health and Safety Regulations

When faced with the query of why the boatsheds were demolished, the issue of health and safety are never far away. The official DTEI statement reads:

Demolition has become necessary due to the derelict condition of the boatsheds, and the risk they pose to the public and the Minister for Transport (A Hartley, 2008, letter, 13 November).
This statement makes it increasingly apparent that the level of disrepair many of the sheds reached left the government with little option. Fearing the risk to the general public, modern health and safety regulations had to be met. Each shed owner was required to obtain $20,000,000 in public liability insurance or relinquish their lease; the majority of the owners chose the latter option (Bachmayor, 2008a). Blum (2009, email, 13 April) contributes his thoughts to the issue of health and safety declaring:

> When the Council decided the sheds had to go, the owners really had no choice. Each owner was asked to get public liability insurance of $20,000,000 and no insurance company would have anything to do with this. Each owner was asked to get a licensed builder to assess each structure and give a written report as to where they failed to meet modern construction and safety standards. (ha ha). The Dept of Transport stated that they would also charge water frontage based on a commercial basis. $200 to start and reassessing the situation later. The Council even suggested they might charge the minimum rates for the land they occupied. So you see the powers that be, forced the issue such that the sheds had to go. No one could comply.

The ‘anything goes attitude’ of the construction years had since evolved into the ‘modern health and safety standards’ of today. The government had offered an ultimatum, bring the sheds to modern safety standards or face the consequences. Nevertheless, Wiedeman stated a valid point with regard to this thought. Even if two thirds of the sheds were maintained, the remaining derelict third would still cause a
public liability issue for the government. To insure against this, a community
movement was needed to upkeep the sheds and thus secure their future (T Wiedeman,
2009, personal communication, 31 March). Yet as Wiedeman suspects, there was a
distinct ‘lack of community’ at the boatsheds (T Wiedeman, 2009, personal
communication, 31 March). As a shed owner himself, he recalled that if a shed
neighbour was unknown, there was no way of getting into contact with them. If for
instance, a shed door had fallen off, there was no way of informing a neighbour of
their maintenance requirements. Contacting fellow shed owners was extremely
difficult; the government held a strict no name release confidentiality stance (T
Wiedeman, 2009, personal communication, 31 March). It would also appear that due
to ‘some irresponsible owners’ who failed to maintain their structures or those who
‘toss loose iron over the back of their shed’ (R Blum, 2009, personal communication,
09 April), the boatshed area became too hazardous to remain in place under the rising
public safety concerns. Due to this, access to the sheds by means of a fence, was
restricted on 20 October 2008 (Sallis, 2009, email, 15 April).

During the survey work, twisted and rusted metal was noticeably strewn across the
site. This certainly supported the DTEI fears of the area being a health and safety
concern. Discarded rails littered the site, presumably having been there for many years.
Though the shed structures themselves may have exhibited a major decline in
structural integrity during the final preparation for their demolition, it is the dangerous
state of the rail pieces that would have caused many safety concerns.
Evolving Technology

When determining the possible causes for shed abandonment and shed demolition, one has to take into account the role of changing technology. According to Parsons in *Southern Passages: A Maritime History of South Australia* (1986), early colonial Australia relied heavily on the maritime industry, none more so than South Australia who maintained a large trading fleet of ketches. With the arrival of the Second World War, much of the coastal shipping had to be diverted to military use (Parsons, 1986: 317). This put increased pressure on the development of the auto industry and the implementation of an effective rail network (Parsons, 1986: 317). Interestingly, ‘the goods carried on South Australian railways rose from 2.7 to 3.5 million tons annually during the war years, and many users chose not to return to sea transport’ (Parsons, 1986: 317). The aviation industry grew even more so, after the war it began to ‘rob the shipping companies of much of their traditional passenger business’ (Parsons, 1986: 317). With a shift to rail and air transport, there was a decline in the need for maritime infrastructure.

From 1946-1966, the South Australian population almost doubled from 640,000 to 1.1 million. This mirrored the rise in motor vehicle ownership which rose from 107,238 to 409,709 (Parsons, 1986: 317). These increases demanded new and improved roads which ‘gave a revolutionary new speed and convenience to motor transport. Many travellers became accustomed to driving themselves, and many businessmen turned from the delays and multiple handling of sea transport to door-to-door motor vehicle deliveries’ (Parsons, 1986: 317). This advance in motor transport would have greatly impacted the use of the Second Valley boatsheds. Further, suitable ‘trailer technology’ and ‘four wheel drive vehicles’ would have been used to pull boats along the
‘improved quality of roads’ (T Wiedeman, 2009, personal communication, 31 March). Effectively, these advances opened up several options to the local fishing community; a simple launch from a car trailer now became a quick and easy option.

Combine this technology with the 1960s development of the fibreglass-hulled vessel and the once restrictive pastimes of yachting and boating gained more of a recreational boating audience. This period coincided with a time of prosperity which enabled more people to participate and enjoy the activity (Parsons, 1986: 355). However, this boom in marine recreation did not come without its own set of issues. The exposed nature of the South Australian coastline and sea approaches were subject to sudden changes of weather. This in turn proved unfriendly to recreational boaters as amateurs could endanger themselves and others. Thus a government initiated system of licensing for recreational craft was developed. Additionally, there was an overcrowding of what few natural accommodation and facilities that were available for small craft at the time. As a result it became a necessity to develop new boat havens, marinas and boat ramps to accommodate this increase in craft (Parsons, 1986: 355-56).

The issue facing the Second Valley community and vacationers was the lack of one of these boat havens in close proximity to fishing grounds. Trailer launches had previously been possible (usually with a tractor) via the Second Valley beach ‘but the ramp and conditions are far from ideal, especially in the summer when people are on the beach’ (Blum, 1985: 143). With the arrival of modern marine facilities at the likes of Wirrina by the late 1970s, the associated strains of shed maintenance and security eventually become redundant.
Located roughly 4km to the north, most fishers in the area ‘prefer to launch at the relatively new ramp at the Wirrina Holiday Resort’ (Blum, 1985: 143). This late 1970s project is situated on 522 hectares (1290 acres) of land with sea frontage of 4km. It ‘boasts a first class hotel/motel/recreation complex with an indoor heated pool, spa, sauna, gymnasium, and licensed restaurant. In addition there is an eighteen hole golf course, caravan park, tennis courts, grass skiing and a small harbour with launching facilities’ (Blum, 1985: 144). The construction of this complex signified the ‘death nail’ to Second Valley sheds as there was no longer a ‘real need to launch from the sheds’ (T Wiedeman, 2009, personal communication, 31 March). With only a $7 launch fee, Wirrina and its concrete ramp was proving an easier way to fish. Wiedeman remarks how ‘people don’t want to screw around fixing rails when there is a concrete slipway down the road’. The ‘labour time involved’ was severely reduced with this introduction (2009, personal communication, 31 March). Blum also noted a marked decline in boatshed use when the Wirrina boat ramp opened (R Blum, 2009, personal communication, 09 April).

The vandalism at the sheds had required owners to take anything of value back home with them including their fishing rods and even motors. Also, the winch launching system required regular maintenance to ensure its effective use. The maintenance efforts required seems excessive considering a boat ramp was now on offer (R Blum, 2009, personal communication, 09 April). The fact that all winches were located during the survey suggests that they were no longer viewed as useful technology.

The Wirrina complex went into receivership in 1992 but was purchased by a Malaysian company called Malaysian Borneo Finance. They have since revamped the
resort and included is a new 206 berth marina and a new public boat ramp. This boating facility is now called ‘Marina St Vincent and the complex now goes by the name of the ‘Paradise Wirrina Cove’ (Blum, 2002: 160). It still offers a concrete boat ramp negating the use of the Second Valley boatsheds (Figure 6.2).

![Wirrina boat ramp](image)

Figure 6.2: The Wirrina boat ramp April 2009 (Photo-Steven Lake 09/04/09)

Fisheries Acts

During the life span of the Second Valley boatsheds four Fisheries Acts were in place, Fisheries Act 1917-67, Fisheries Act 1971, Fisheries Act 1982 and the present Fisheries Management Act 2007. Apart from one exception, the fishers operating out of the sheds were not professional. However, it was believed that before the increased restrictions and their enforcement of the 1971 or 1982 Acts, there was some what of a black market in fish (R Blum, 2009, personal communication, 09 April). The previous acts obviously did not hold sufficient threat to black market fishers.
After examining each of these Acts, it is possible to note that there were restrictions set in place regarding pot limits and permit requirements under each act. As the latter Acts came into law, an increase in restrictions and regulations can also be noted, specifically in terms of attaining a license. However, these acts are mainly referring to the rights and rules of commercial fishers, with each act providing little regulation to recreational fishing as long as pot limits and fishing methods remained ethical.

As noted by Carter (1987) in *For they were Fishers: The history of the fishing industry in South Australia*, the new fisheries act of 1971 signalled a tightening. ‘The major change from the past laissez-faire attitude towards the management of the State’s fisheries resources was that the Act enabled the Director of Fisheries to refuse an application for a fishing licence’ (Carter, 1987: 210). The 1982 Act continued along this tightening restriction and introduced substantially higher penalties for commercial and recreational fishermen convicted of offences under the Act. The maximum penalties facing fisherman who broke the rules went up to $5000, with a further penalty of up to $10 000 for offences involving taking fish (Carter, 1987: 215). With the increase of recreational fishing, due to people having more leisure time and the advancement in fishing equipment, there had been increased pressure on South Australian fish stocks (Carter, 1987: 215). According to Carter, without adequate controls or penalties ‘sufficient to pose a realistic deterrent to unscrupulous and greedy individuals, the increased fishing effort could lead to decline or collapse of fish stocks’ (1987: 215). So it seems entirely plausible, that the 1981 Fisheries Act may well have halted any illegal trade that existed out of the boatsheds. The present act, the 2007 Fisheries Management Act, seems to have come too late to hold any significance in the final fate of the boatsheds. Therefore, it is suggested that the tightening legislation of
the 1971 and 1982 Acts combined with vandalism, maintenance and the ease of the Wirrina concrete ramp created an unfavourable environment for the boatsheds.

New Generation

The role of changing generations also cannot be overlooked. As the original shed builders and owners began to pass away around the 1990s, the new generation of shed owners were faced with the related maintenance and use issues. However, from the beginning of ownership, new owners had the choice of modern facilities from which to launch their fishing vessels. They held no historic tie to the shed slipway. Some of the new owners would have only been family relatives of the ‘week-enders’ who built the sheds, and may not have lived near Second Valley. Therefore, the notion and costs of maintaining something which was to be seldom used was not appealing. The method of fishing from boatsheds had become dated. Through a combination of the aforementioned reasons, the majority of the new owners did not select to maintain their sheds to modern standards.

The Second Valley Boatsheds use-life

Having discussed the possible causes behind the demolition, the archaeological and historical investigations have identified several stages in the Second Valley boatshed use-life. These stages are represented in *Table 6.1*.
Table 6.1: Second Valley boatsheds use-life model

<table>
<thead>
<tr>
<th>Second Valley boatshed Use-Life Model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Life stage</td>
<td>Dates</td>
</tr>
<tr>
<td>Construction</td>
<td>1950s - 1960s</td>
</tr>
<tr>
<td>Operation and maintenance</td>
<td>1950s - October 2008</td>
</tr>
<tr>
<td>Vandalism</td>
<td>1970s - April 2009</td>
</tr>
<tr>
<td>Wirrina boat ramp constructed</td>
<td>Late 1970s</td>
</tr>
<tr>
<td>Abandonment</td>
<td>1990s - 2000s</td>
</tr>
<tr>
<td>Site restriction</td>
<td>October 2008</td>
</tr>
<tr>
<td>Demolition</td>
<td>April 2009</td>
</tr>
</tbody>
</table>

Archaeological analysis of the boatsheds has noted the derelict state related to the suggested abandonment phase and also the effects of site restriction. Amongst several of boatsheds, the impact of vandalism has been witnessed as has the visual signs of shelter abandonment prior to site restriction. For instance, damage sustained in the form of rusted and detached rail pieces of the slipways appeared to date before the October, 2008 site restriction. The degree of damage and deterioration in the ferrous metal would not have been possible in the two months between site restriction and the field survey. Thus, it is fair to assume that some of the sheds had not been in active service for some years.

The investigation also identified the haphazard methods behind the shed structure construction and repair. This provides an example of the recreational fishing culture evident throughout the Fleurieu Peninsula and perhaps offers a parallel to the mid-twentieth century fishing culture represented in Australia as a whole. The Second Valley case not only offers a date for when recreational maritime structures were constructed in the area, but also provides data relating to the continued effects of the environment and vandalism, and the resulting maintenance requirements on these types
of structures. The nature of discard evident in this case study directly corresponds with these maintenance behaviours. When new technology provides quick and easy water access via concrete slipways, the issues associated with maintaining an old fashioned boatshed are outweighed by the ease of use of modern facilities.

Were the Second Valley boatsheds abandoned? From what perspective are they considered abandoned?

Former shed owner Tony Wiedeman feels very strongly in regard to this issue. He suggests in part that the, ‘government abandons infrastructure’ (T Wiedeman, 2009, personal communication, 31 March). Wiedeman identifies that pre-World War One, most trade and travel was completed by horse or boat. For instance, grain or people were taken by horse to a jetty then on to a ketch. All these small ports had infrastructure in place to accompany this industry and were supported by the Marine Harbours Board. Wiedeman believes that with the evolution of technology improving overland transport, the government has been left with a huge maritime resource that they do not know what to do with. As a result, this infrastructure is left to fall into disrepair and consequently demolished for health and safety reasons (T Wiedeman, 2009, personal communication, 31 March). Further, Wiedeman states, ‘In subjugating to risk management and public liability issues we are abandoning community and heritage’ (T Wiedeman, 2009, personal communication, 31 March). Obviously Wiedeman is closely tied to the sheds, but his perspective raises an interesting question: was the demolition of the sheds government-forced abandonment?

Wiedeman does identify that perhaps a quarter of the shed owners did walk away, proclaiming the sheds were too difficult to maintain (T Wiedeman, 2009, personal
communication, 31 March). He admits this attitude gives the government reason to believe that they have been abandoned based on their appearance. Blum continues this notion suggesting the sheds were ‘abandoned by their owners’ and that the ‘government would have allowed them to remain had the owners looked after them’ (R Blum, 2009, personal communication, 09 April). Yet, according to the DTEI ‘most - but not all - owners paid their annual fees, but it varied considerably as to how often individual owners actually visited and used their sheds’ (Sallis, 2009, email, 15 April).

Considering these perspectives, it is likely that there is an element of truth in owner-abandonment and government-forced abandonment. What can be determined is that the boatsheds proceeded to be effected by various processes due to official site restriction. As demolition became imminent shed owners gathered anything that could not be left to the bull-dozer. Utilising Richards’ term *consequential abandonment* and applying it to maritime infrastructure, the planned nature of abandonment resulted in any items of value being salvaged rather than discarded. Further applying Richards’s term *deliberate abandonment* to this environment, it is noted that all the unwanted material that remained can be deemed deliberately discarded by the shed owners.

However, when investigating if potential elements of abandonment existed prior to the demolition decision, it would seem fitting to introduce a more ‘infrastructure’ focused term to the Richards’ abandonment terminology. This has been labelled *primary-use abandonment*. While the boatsheds were neglected in terms of their maintenance (thus affecting their primary use), they still maintained a social and historical significance to the owners and community. Though visually the Second Valley boatsheds site may have appeared abandoned, many of the leases were still paid to the government and a
select few were still able to perform their function. The sheds still served a purpose as an icon to the area, a link to a past and present South Australian maritime culture. Therefore, it is suggested these sheds were not 100 percent abandoned nor forgotten but merely neglected. Sadly, this attitude would not protect the sheds in the twenty-first century. The government may have forced the issue, but the DTEI has a legal obligation to insure the safety of the public.
Chapter 7: Conclusion and Future Potential

Conclusion

Given the extent of research that maritime archaeology now involves, it has been the aim of this thesis to add fresh and interesting information to the ever growing database that exists. Few studies have been conducted with a direct focus into recreational maritime infrastructure and it is hoped that this will encourage further studies into this untapped heritage. Richards states that, ‘discarded watercraft can be used as a mirror to the events and processes that brought about their disposal, and they are an extremely rich database that sheds light on the effect of technological and economic change, on economic, and social circumstances’ (Richards, 2002: 379). This thesis argues that abandoned recreational maritime infrastructure can also provide such information. These types of archaeological sites can be studied to understand economic, technological and social patterns related to the human behaviour of recreation.

The Second Valley boatsheds stood for between 60 and 70 years. From their construction in the 1950s -1960s they have always been a place to house recreational fishing vessels. Though they have a tainted history due to vandalism, they are still considered a historic landmark and bear social significance to many local residents and visitors alike. Their loss has even sparked the creation of a web page dedicated to their aesthetic charm.

The maritime culture on display has offered a unique look at coastal life along the Fleurieu Peninsula and South Australia. This research has outlined the use-life of the Second Valley boatshed and identified changes that have affected their use over the
last half of the century. The abandonment theme discussed by Richards and Khan and literature on site formation processes has been utilised to allow for an interpretation of the causes behind the eventual boatshed abandonment and demolition. The acquired data reveals much about the history of South Australian coastal towns in terms of human behaviour, the impact of economic, demographic, technological changes, changing government policies, and the evolving role of recreational maritime infrastructure.

Future Potential

The study of the Second Valley boatsheds has provided a snapshot of a maritime culture dating from the late 1950s. Though in archaeological terms a relatively young site, the boatsheds still prove a viable archaeological heritage. The data correlated refers to a singular case study considering the *use-life* of recreational fishing sheds and their potential for interpreting the Fleurieu Peninsula maritime landscape. The significance of studying this recreational archaeological site could be further realised through regional, state and even national comparisons.

Further, Australia has a wealth of official infrastructure linked to its past maritime culture. As the nation developed, roads, rail and aviation technologies all improved having a severe impact on the use of the coastal waters for transport, travel and trade. No longer did businesses and travellers rely on vessels sailing the coast stopping at jetties and ports. Delays and handling costs could be drastically reduced through overland travel. Therefore, this wealth of maritime infrastructure associated with pre-World War Two Australia remains unused and unwanted by the government. It proves costly to maintain and provides health and safety concerns due to its continual
degrading status. It is suggested that before this remaining evidence of an historic period of South Australia is lost to neglect and demolition, a comprehensive study should take place cataloguing the varying forms of recreational and official infrastructure.
References

Blum, R., (2009), Personal Communication, 09 April.

Blum, R., (2009), personal communication, email, 13 April.

Blum, R., (2009), personal communication, email, 14 April.

December Boys, (2007), [film], Hardy, R., Warner Brothers.

Fisheries Act 1917-62 (South Australia).

Fisheries Act 1971 (South Australia).

Fisheries Act 1982 (South Australia).

Fisheries Management Act 2007 (South Australia).

Gibbs, R.M., (1984), A History of South Australia: from Colonial days to the present, Southern Heritage.

Green, J., (2004), Maritime Archaeology, Elsevier Academic.

Holthof, B. L., (2008), ‘Lighthouse Archaeology: the Port MacDonnell and Cape Banks lights’, in Flinders University Maritime Archaeology Monographs Series, Number 19, Flinders University, Department of Archaeology.

Olsson, A., (2008), personal communication, 13 December.

Richards, N. T., (2008), Ships Graveyards, University of Florida Press.

Sallis, P., (2009), personal communication, email, 15 April.

Shadows of the Heart, (1990), [Television mini-series], BFS Entertainment, South Australia.

Wiedeman, T., (2009), personal communication, 31 April.

Williams, R.F., (1986), *To find the Way: Yankalilla and District 1836-1986*, The Yankalilla and District Historical Society INC.
Appendix 1: The Second Valley Boatsheds site plan

12-16 December 2008
Scale 1:100
Appendix 2: The Second Valley Site Plan Legend

- **Boat trolleys**

- **Rails**

- **Carriage wheel**

- **Concrete footing with hole for fence post**

- **Shed overhang, continuation of rail under sand and sediment**

- **Concrete stools for rail line**

- **Interior shed wall**

- **Areas of concretes**

- **Winch and concrete footi**

- **Wood beams between rails**

- **Winch wire coil**

- **Plastic tubing**

- **Concrete footing with ferrous post remains**

- **Concrete footing with hole for fence post**