Daylight saving time shifts and incidence of acute myocardial infarction

FCEB Journal Club 6th September 2012
Presented by: Susan Kim
Background

• “Clock shifts may disrupt chronobiological rhythms, influence sleep duration and quality, and the effect lasts for several days after the daylight saving time change” (Janszky et al. 2012. p1)

• “after the springtime shift into DST, there is a modest increase in acute myocardial infarction (AMI) incidence which lasts for several days.” (Janszky et al. 2012. p1)
Questions

• Objectives:
 – To confirm changes in risk associated with daylight saving time (DST)
 – To investigate the role of individual factors (age, sex history of cardiac events, diabetes, hypertension, smoking, BMI, lipids, and medication) in enhancing or mitigating the risks associated with DST
Data

- RIKS-HIA registers: all patients admitted to the coronary care unit of participating hospitals
- 19 participating hospitals in 1995
- 74 hospitals participated in 2007 (over 95% of coronary care admissions in Sweden)
- All available patients with a diagnosis of AMI on RIKS-HIA registers.
- A recurrent myocardial infarction occurring within 28 days of an AMI was not considered as a separate event in primary analyses, but was examined secondarily.
Data

- Age, sex, history of heart failure, hypertension, diabetes, previous AMI, previous coronary revascularization procedures and medications
- Smoking habits and smoking status (never, current and former smoking); former smoking was defined as not smoking if given up more than one month before.
- BMI – obese (over 30kg/m²)
- Categorized total cholesterol, HDL cholesterol, and triglycerides
Data

• Daylight saving time (DST) – started last Sunday of Marcy; ended last Sunday of September; from 1996, DST ends last Sunday of October
Analyses

• Observed AMI incidence on the first seven days after the shift compared with the expected incidence.
• Expected incidence: mean incidence of the control weeks before/after the shift.
• Control weeks:
 – ‘before’: started on a Sunday two weeks before the DST shift
 – ‘after’: started on a Sunday two weeks after the shift
Analyses

- $IR = \frac{observed}{expected}$
 - Observed = sum of events during the first seven days after the DST shift
 - Expected = (sum of the number of events on the control week before the shift and the number of events on the control week after the shift)/2

- Confidence intervals: Sun et al. (1996)

- Easter, length of Sundays adjusted.
Results

• Transition into DST
 – Slightly elevated incidence
 – Higher
 • Low cholesterol and triglycerides
 • Cardiac medications – aspirin or CA channel blockers
 • Similar results for sensitivity analyses

• Transition out of DST
 – No evidence for a change in AMI incidence
 – Lower – hyperlipidemia, CA-channel blockers
 – Higher – never smoked
	Expected	Observed	IR (95% CI)	P value
All	3115.5	3235.9	**1.039 (1.003–1.075)**	0.38
Men	1987.5	2034.9	1.024 (0.980–1.069)	0.12
Women	1128	1201	1.065 (1.006–1.127)	0.046
Age <65 years	867	877.4	1.012 (0.946–1.081)	0.46
Age ≥65 years	2248.5	2358.5	1.049 (1.007–1.092)	0.82
Any previous CHD event	1230.5	1308.8	1.064 (1.007–1.123)	0.37
No previous CHD events	1836	1884.8	1.027 (0.981–1.074)	0.22
Diabetes yes	776	843.1	1.087 (1.014–1.162)	0.22
Diabetes no	2339.5	2392.8	1.023 (0.982–1.065)	0.22
Hypertension yes	1159.5	1269.5	1.095 (1.035–1.157)	0.22
Hypertension no	1861.5	1891	1.016 (0.971–1.063)	0.22
Current smoker	609	603.4	0.991 (0.913–1.073)	0.22
Former smoker (>1 month)	838	849	1.013 (0.946–1.084)	0.22
Never smoker	1377.5	1501.9	1.090 (1.036–1.147)	0.22
BMI ≥30 kg/m²	161.5	185.2	1.147 (0.987–1.324)	0.22
BMI <30 kg/m²	788	806.7	1.024 (0.954–1.097)	0.22
Cholesterol ≥5.2 mmol/L	**563**	**540.3**	**0.960 (0.880–1.044)**	0.05
Cholesterol <5.2 mmol/L	**685.0**	**752.7**	**1.099 (1.022–1.180)**	0.05
HDL ≤1.03 mmol/L	416	426.1	1.024 (0.929–1.126)	0.07
HDL >1.03 mmol/L	756	786.2	1.040 (0.969–1.115)	0.07
Triglycerides ≥2.25 mmol/L	231	206.5	0.894 (0.776–1.025)	0.07
Triglycerides <2.25 mmol/L	984.5	1037.1	1.053 (0.990–1.120)	0.07
Beta blockade yes	1243.5	1337.5	1.076 (1.019–1.135)	0.07
Beta blockade no	1810	1847	1.020 (0.974–1.068)	0.07
CA channel blocker yes	502.5	573.3	1.141 (1.049–1.238)	0.07
CA channel blocker no	2544.5	2604.1	1.023 (0.984–1.063)	0.07
ACE inhibitors yes	647	717.2	1.109 (1.029–1.193)	0.07
ACE inhibitors no	2405	2464.3	1.025 (0.985–1.066)	0.07
Anticoagulants yes	164	173.9	1.060 (0.908–1.230)	0.07
Anticoagulants no	2888.5	3001.6	1.039 (1.002–1.077)	0.07
Aspirin yes	1280.5	1400.5	1.094 (1.037–1.153)	0.07
Aspirin no	1773	1794.1	1.012 (0.966–1.060)	0.07
Statins yes	583.5	634.7	1.088 (1.005–1.176)	0.07
Statins no	2463.5	2543.8	1.033 (0.993–1.074)	0.07

<table>
<thead>
<tr>
<th></th>
<th>Expected</th>
<th>Observed</th>
<th>Incidence ratio (95% CI)</th>
<th>P value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>4095.5</td>
<td>4074.4</td>
<td>0.995 (0.965–1.026)</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>2616</td>
<td>2614.2</td>
<td>0.999 (0.961–1.038)</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>1479.5</td>
<td>1460.2</td>
<td>0.987 (0.937–1.039)</td>
<td>0.76</td>
</tr>
<tr>
<td>Age <65 years</td>
<td>1122.5</td>
<td>1126.1</td>
<td>1.003 (0.945–1.064)</td>
<td>0.79</td>
</tr>
<tr>
<td>Age ≥65 years</td>
<td>2973</td>
<td>2948.2</td>
<td>0.992 (0.956–1.028)</td>
<td></td>
</tr>
<tr>
<td>Any previous CHD event</td>
<td>1608.5</td>
<td>1600.7</td>
<td>0.995 (0.947–1.045)</td>
<td></td>
</tr>
<tr>
<td>No previous CHD events</td>
<td>2417</td>
<td>2419.1</td>
<td>1.001 (0.961–1.042)</td>
<td>0.99</td>
</tr>
<tr>
<td>Diabetes yes</td>
<td>980.5</td>
<td>1011.7</td>
<td>1.032 (0.969–1.097)</td>
<td></td>
</tr>
<tr>
<td>Diabetes no</td>
<td>3115</td>
<td>3062.6</td>
<td>0.983 (0.949–1.019)</td>
<td>0.28</td>
</tr>
<tr>
<td>Hypertension yes</td>
<td>1555.5</td>
<td>1622.1</td>
<td>1.043 (0.993–1.095)</td>
<td></td>
</tr>
<tr>
<td>Hypertension no</td>
<td>2418</td>
<td>2355.9</td>
<td>0.974 (0.935–1.014)</td>
<td>0.09</td>
</tr>
<tr>
<td>Current smoker</td>
<td>804.5</td>
<td>796.3</td>
<td>0.990 (0.922–1.061)</td>
<td></td>
</tr>
<tr>
<td>Former smoker (>1 month)</td>
<td>1091</td>
<td>1027</td>
<td>0.941 (0.885–1.001)</td>
<td></td>
</tr>
<tr>
<td>never smoker</td>
<td>1802</td>
<td>1887.3</td>
<td>1.047 (1.001–1.096)</td>
<td>0.07</td>
</tr>
<tr>
<td>BMI ≥30 kg/m²</td>
<td>239.5</td>
<td>244.8</td>
<td>1.022 (0.898–1.158)</td>
<td></td>
</tr>
<tr>
<td>BMI <30 kg/m²</td>
<td>1120.1</td>
<td>1120.1</td>
<td>1.035 (0.975–1.097)</td>
<td>0.89</td>
</tr>
<tr>
<td>Cholesterol ≥5.5 mmol/L</td>
<td>813.5</td>
<td>747.8</td>
<td>0.919 (0.855–0.988)</td>
<td></td>
</tr>
<tr>
<td>Cholesterol <5.2 mmol/L</td>
<td>956.0</td>
<td>998.8</td>
<td>1.045 (0.981–1.112)</td>
<td>0.03</td>
</tr>
<tr>
<td>HDL ≤1.03 mmol/L</td>
<td>581.0</td>
<td>575.5</td>
<td>0.990 (0.911–1.075)</td>
<td></td>
</tr>
<tr>
<td>HDL >1.03 mmol/L</td>
<td>1063</td>
<td>1046.2</td>
<td>0.984 (0.925–1.046)</td>
<td>0.92</td>
</tr>
<tr>
<td>Triglycerides ≥2.25 mmol/L</td>
<td>333</td>
<td>294.2</td>
<td>0.883 (0.785–0.990)</td>
<td></td>
</tr>
<tr>
<td>Triglycerides <2.25 mmol/L</td>
<td>1366.0</td>
<td>1384.1</td>
<td>1.013 (0.961–1.068)</td>
<td>0.08</td>
</tr>
<tr>
<td>Beta blocker yes</td>
<td>1645.5</td>
<td>1680.5</td>
<td>1.021 (0.973–1.071)</td>
<td></td>
</tr>
<tr>
<td>Beta blocker no</td>
<td>2376</td>
<td>2329.4</td>
<td>0.980 (0.941–1.021)</td>
<td>0.26</td>
</tr>
<tr>
<td>CA channel blocker yes</td>
<td>735</td>
<td>662.4</td>
<td>0.901 (0.834–0.973)</td>
<td></td>
</tr>
<tr>
<td>CA channel blocker no</td>
<td>3276</td>
<td>3334.4</td>
<td>1.018 (0.984–1.053)</td>
<td>0.02</td>
</tr>
<tr>
<td>ACE inhibitors yes</td>
<td>853</td>
<td>859.6</td>
<td>1.008 (0.941–1.077)</td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors no</td>
<td>3163.5</td>
<td>3149.3</td>
<td>0.996 (0.961–1.031)</td>
<td>0.80</td>
</tr>
<tr>
<td>Anticoagulants yes</td>
<td>221.5</td>
<td>201.8</td>
<td>0.911 (0.790–1.046)</td>
<td></td>
</tr>
<tr>
<td>Anticoagulants no</td>
<td>3797</td>
<td>3810</td>
<td>1.003 (0.972–1.036)</td>
<td>0.29</td>
</tr>
<tr>
<td>Aspirin yes</td>
<td>1735</td>
<td>1719.4</td>
<td>0.991 (0.945–1.039)</td>
<td></td>
</tr>
<tr>
<td>Aspirin no</td>
<td>2288.5</td>
<td>2293.5</td>
<td>1.002 (0.962–1.044)</td>
<td>0.77</td>
</tr>
<tr>
<td>Statins yes</td>
<td>849</td>
<td>778.9</td>
<td>0.917 (0.854–0.984)</td>
<td></td>
</tr>
<tr>
<td>Statins no</td>
<td>3167</td>
<td>3228</td>
<td>1.019 (0.984–1.055)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

* First week after the autumn clock shift.
Discussion

• Increase in risk for AMI after the transition into DST
• No effect of transition out of DST
• Acute sleep deprivation may trigger coronary events (ref 26)
• Limitations
 – delay in CCU admissions
 – No data on sleep