Józef Stanisław Ostoja-Kotkowski
Australian, 1922 – 1994

Dawn c1986
mixed media, synthetic polymer on aluminium
110 x 110 cm
Gift of the Estate of Edward Stirling Booth
Flinders University Art Museum Collection 4241.415
Image © the Estate of the artist, Andrew and Edward Booth

“I was immediately drawn to Józef Stanisław Ostoja-Kotkowski’s work... in particular, the dynamic, psychedelic, disco-esque, yet controlled symmetry in Dawn (c1986).

The petal-like shapes extending out to feathery forms radiate energy, tantalising the eye like a new dawn.

Ostoja-Kotkowski was a prolific creator and innovator across many media, art forms and the sciences, including theatre design, breaking ground in the use of electronic light and sound.”

Jackie Wurm, Project Officer, Flinders University Art Museum & City Gallery

NEW DAWN

...experiment and experiment bravely.”
This visionary quote by the founding Vice-Chancellor of Flinders University, Professor Peter Rawlin, greets you as you enter the Student Hub and Plaza at Bedford Park.
Learn from incredible minds whose research not only meets the world standard, but exceeds it. Plug into industry trends and gain real-world experience that makes you work-ready upon graduation.

Share your ideas in stimulating learning spaces with like-minded individuals. It’s the perfect environment in which to become the best you can be.

To find out more about the Flinders experience, visit: flinders.edu.au/experience

GEROGIC FOOTPRINT
Flinders University’s reach extends beyond Adelaide.
• Bedford Park campus – only 25 minutes from the CBD
• Tonsley centre for innovation and entrepreneurship
• Study certain degrees in the city at our Victoria Square location
• Regional SA locations: Port Lincoln, Barossa, Murray Bridge, Victor Harbor, Renmark
• Regional interstate locations: Victoria and the Northern Territory

SCHOLARSHIPS
In 2016, Flinders University offered more than 600 scholarships worth over $4.2m. A generous range of scholarships is available to new and continuing undergraduate students.

90% OF RESEARCH AT OR ABOVE WORLD STANDARD
Excellence in Research for Australia Rankings 2015

ACCOMMODATION
Flinders is the only university in Adelaide that gives you the opportunity to live on campus. Flinders Living offers accommodation for over 550 students at the University Hall and Deirdre Jordan Village.

FLINDERS CONNECT
Flinders Connect is your one-stop-shop for help with everything from enrolment and fees to exams and graduation. You can also access Flinders Connect for specialist services in admissions, careers and IT help. A range of support services is also available.

SPORTS & FITNESS
Stay in shape while you flex your mind. The Bedford Park campus includes a state-of-the-art Sport and Fitness Centre where you can work out while taking in the best views of any gym in Adelaide. Flinders also has courts and ovals for a variety of sports. Get involved in our sporting teams, clubs and events.

WORK-INTEGRATED LEARNING
Work-Integrated Learning (WIL) enables you to gain work experience while you study. Flinders aims to provide each and every student with access to a WIL opportunity during their studies through placements, practicums, field studies, and simulated workplace settings and assessment activities.

CAREERS & EMPLOYER LIAISON CENTRE
The Careers and Employer Liaison Centre helps give you the edge in your career.

The centre provides a diverse range of services and programs including job posting services, access to employers, tailored careers advice, and a comprehensive range of careers resources.

FLINDERS UNIVERSITY STUDENT ASSOCIATION (FUSA)
Flinders has a long history of active student involvement.

The Flinders University Student Association (FUSA) continues that tradition, and represents the rights and interests of students. FUSA manages social events, non-sporting clubs and societies, the student publication Empire Times, and helps with academic, administrative and welfare issues.

DIFFERENTLY THINK
Careers are evolving and the workplace and industries of the future will look very different from today.

That’s why we have introduced a new suite of innovation and enterprise electives and courses to prepare you for the careers of tomorrow. Powered by the Fox School of Business, a US top ten business school for entrepreneurship*, and our very own New Venture Institute, these electives will help you to develop what we like to call ‘personal enterprise skills’.

These are the skills that employers are looking for. From critical thinking, to problem solving and creativity, and understanding how disruptive technology will impact the world around us, these foundation electives will equip you with the innate ability to adapt to whatever life throws at you, personally and professionally.

Whether you’d like to include innovation electives in your degree or make it your focus, you can customise the program to suit your needs. Make yourself career ready and ensure you succeed in the future workforce by gaining these critical foundation skills by choosing one of the INNO electives.

Visit: flinders.edu.au/innovation

* The Princeton Review and Entrepreneur magazine.

OPEN DAYS
18 & 19 AUGUST
flinders.edu.au/open-days

Students working at Flinders at Tonsley
Flinders University’s engineering degrees are offered in close collaboration with industry, giving you specialist knowledge and an integrated “toolkit” of skills that will enable you to meet the requirements of industry as it continues to change.

Highly rated undergraduate engineering degrees

for overall quality of educational experience, overall graduate satisfaction and graduate rating of teaching quality*

Fast facts

- Professionally accredited degrees in a range of engineering disciplines
- Plug into our $120m hub of innovation and entrepreneurship at Tonsley
- Take part in our nationally recognised 20-week industry placement program
- Engage with teachers and peers in small classes
- Engineering science degree can be used as a pathway to engineering degrees
- Flexibility to transfer within most engineering degrees
- All engineering degrees can be combined with our design and technology innovation degree

* Quality Indicators for Learning and Teaching (QILT)
Bachelor of Design and Technology Innovation

Make new ideas a reality.

The Bachelor of Design and Technology Innovation links user needs to technology and commercial reality. Developing a new product or service requires you to identify a problem and create a commercial solution. The degree prepares you to do this by developing a sound understanding of three areas: design, innovation management, and science, technology and engineering.

STUDY PROGRAM*

First year
A typical first year might include:
• core topics in design communication, professional skills and engineering design
• topics in mathematics, data science or biostatistics
• topics in innovation and enterprise such as agile innovation for STEM
• topics in science, engineering or business to attach your design skills to a particular field.

Second year
A typical second year might include:
• core topics in innovation management, design for manufacture and design methods
• topics in entrepreneurship and small business, business planning for new ventures, strategic marketing, consumer behaviour, or social and information networks
• topics in innovation and enterprise to develop skills in co-creation, crowdourcing, technology-led innovation and opportunity validation
• topics in science or engineering to attach your design skills to a particular field.

Third year
A typical third year might include:
• a capstone topic, design studio, which is an integrated high-technology design consulting project with a company
• a 12-week practical work experience placement in industry in Australia or overseas
• topics in innovation and enterprise to develop skills in business model design, commercialisation and launching new ventures
• topics in science or engineering to attach your design skills to a particular field.

* Intended as a guide only. Check the course rule for this degree program on our course web pages regularly for the most comprehensive and up-to-date topic information.

PRACTICAL EXPERIENCE

The degree provides you with practical experience that prepares you for the workplace:
• Gain hands-on exposure to the cutting-edge equipment and facilities of Flinders University’s new technology precinct at Tonsley.
• Participate in a 12-week industry work integrated placement.
• Undertake an integrated high-technology design consulting project to put what you learn into practice.

ACCREDITATION

The degree is recognised by the Design Institute of Australia.

STUDY ABROAD

There are opportunities to take your studies overseas with a 12-week practical work experience placement in Europe, Asia, or North America.

PREFERENCES

When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Science.

COMBINED DEGREES

Expand your career options by combining this degree with a bachelor degree in science, engineering, information technology or environment. Contact Flinders Connect for advice on available combinations.

CAREER OPPORTUNITIES

Your degree is the first step towards a range of employment opportunities. Some potential occupations for those with a degree in this area as they progress through their career include:
• product designer
• business development manager
• commercialisation specialist
• graduate consultant
• innovation strategist.

Wages and employment opportunities.

FURTHER STUDY

• PhD research programs.

STUDY ABROAD

• Overseas.

With more than 150 staff and 2,000 students – and a 2,000 square metre pod for heavy engineering equipment – Tonsley is a place where Flinders University students interact with business and where business interacts with Flinders researchers in areas such as engineering, medical devices and nanoscale technologies.

Flinders at Tonsley centrally locates the University’s School of Computer Science, Engineering and Mathematics, New Venture Institute, Flinders Partners, Medical Device Research Institute, and Centre for Nanoscale Science and Technology alongside some of Adelaide’s biggest businesses and industries, including South Australian-owned technology and communication company Hills.

Tonsley is located centrally between Flinders University’s Bedford Park campus and Adelaide city. It’s connected to the city by train, offering convenient access 15 minutes from the city’s CBD. And Tonsley is a five minute car ride, a 15 minute ride on the Flinders loop bus, or a 30 minute walk from the Bedford Park campus.

Tonsley embodies world’s best practice in education, teaching and research. It’s a place where innovation, collaboration and entrepreneurial spirit combine to create the products and processes of the 21st century and beyond.

The Bachelor of Design and Technology Innovation links user needs to technology and commercial reality. Developing a new product or service requires you to identify a problem and create a commercial solution. The degree prepares you to do this by developing a sound understanding of three areas: design, innovation management, and science, technology and engineering.
Bachelor of Engineering (Biomedical) (Honours)

Design systems that enhance the quality of human life.

The Bachelor of Engineering (Biomedical) (Honours) equips you with the skills to investigate, plan, design, manufacture and maintain systems and equipment that are used in all aspects of health care. You will gain a solid education in both engineering and medical science, along with important practical skills and the ability to work as part of an effective team.

STUDY PROGRAM

First year
A typical first year might include:
• core topics in engineering design, engineering mathematics, analysis of engineering systems, biomechanics, biomedical instrumentation, sensors and actuators, and human physiology
• computer-based engineering projects

Second year
A typical second year might include:
• core topics in computer programming, project management for engineering and science, physiological measurement, and workplace preparation
• a 20-week industry placement program
• a selection of electronics-based or mechanics-based engineering topics.

Third year
A typical third year might include:
• core topics in computer programming, project management for engineering and science, physiological measurement, and workplace preparation
• a 20-week industry placement program
• a selection of electronics-based or mechanics-based engineering topics.

Honours
A typical honours year might include:
• a major biomedical engineering research thesis allowing high-performing students to progress to a higher degree by research
• topics in innovation in medical devices and standards, ethics and compliance
• a selection of electives in allied science and engineering areas.

“Intended as a guide only. Check the course rules for this degree program on our course web pages regularly for the most comprehensive and up-to-date topic information.”

PRACTICAL EXPERIENCE

The degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Take advantage of opportunities to develop research skills through the on-site Medical Device Research Institute.

ACCREDITATION

This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord. Graduates meet the academic requirements for attaining chartered professional engineering status.

STUDY ABROAD

There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES

When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Sciences.

PATHWAYS

Successful completion of the first year of the Bachelor of Engineering (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

COMBINED DEGREES

Expand your career options by combining this degree with a bachelor degree in science, engineering, information technology or environment. Contact Flinders Connect for advice on available combinations.

MASTERS DOUBLE DEGREE

The Bachelor of Engineering (Biomedical) (Honours) can also be completed in a double degree with the Master of Engineering (Biomedical). See page 20 for more details.

CAREER OPPORTUNITIES

Your degree is the first step towards a range of employment opportunities. Some potential occupations for those with a degree in this area as they progress through their career include:
• biomedical engineer
• clinical support specialist consultant
• customer support engineer
• field service engineer - pathology
• instrumentation engineer.
Potential employers include:
• Chemtronic Biomedical Engineering
• Epworth HealthCare
• Biosal Laboratories Pty Ltd
• Brainlab
• The Queen Elizabeth Hospital.

FURTHER STUDY

Opportunities for further study include:
• Master of Engineering (Research)
• PhD.

Cutting-edge medical devices aren’t created by the stereotypical lone engineer working in isolation in a research laboratory – at least not at Flinders. The University is bringing the best minds together to create tomorrow’s biomedical solutions today through the Medical Device Partnering Program (MDPP).

Established in 2006 by Professor Karen Reynolds, the MDPP aims to form links between industry, researchers and health professionals. The Partnering Program has been funded by the South Australian Government since its inception, which has seen the majority of activity involving local organisations, but there has in recent times been a steady increase in interstate companies coming to utilise the service.

“Bringing together researchers, industry and medical teams from the start enables the Medical Devices Partnering Program to deliver solutions quickly and creatively,” Professor Reynolds said.

“This project runs for around 250 hours. While this might not seem like a long time, it gives the team long enough to learn whether they can work productively together and also see whether there are opportunities in the near future to continue the working relationships.”

The unique program has led to many new products hitting the market, ranging from Austofix’s Ezy-Aim Electronic Distal Targeting System (an orthopaedic device which removes the need for multiple X-rays when fixing bone fractures) to INNOVO Healthcare’s U Stand Frame (a lightweight, portable frame to help patients move from a sit-to-stand position).

“Working closely with end-users and clinicians we are able to respond to industry-driven problems, fast forwarding the R&D process.”

Professor Karen Reynolds, Director, Medical Device Partnering Program

Matthew Flinders Distinguished Professor

REDESIGNING HEALTH
Bachelor of Engineering (Civil) (Honours)

Use creativity and innovation to solve civil engineering problems.

The Bachelor of Engineering (Civil) (Honours) is designed to prepare you to solve civil engineering problems, taking into account social, economic and environmental concerns. It covers the four main civil engineering themes of structures, transport, water and geomechanics, then applies them to infrastructure design and construction.

STUDY PROGRAM

First year
- Undertake interdisciplinary learning with the aim of meeting future development needs in civil engineering.
- Learn in purpose-built civil engineering labs and workshops.
- Use creativity and innovation to solve civil engineering problems.
- Bachelor of Engineering (Civil) (Honours)

PATHWAYS

Successful completion of the first year of the Bachelor of Engineering (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

COMBINED DEGREES

Expand your career options by combining this degree with a bachelor degree in science, engineering, information technology or a combination.

CAREER OPPORTUNITIES

Your degree is the first step towards a range of employment opportunities.
- Some potential occupations for those with a degree in this area as they progress through their career include:
 - graduate civil engineer
 - graduate design engineer
 - traffic and road safety officer
 - graduate project manager
 - laboratory engineer.
- Potential employers include:
 - SA Department for Planning, Transport and Infrastructure
 - SA Water
 - Land Lease
 - Aurecon
 - Department of Defence.

FURTHER STUDY

Opportunities for further study include:
- Master of Engineering (Research)
- PhD.

STUDY ABROAD

There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES

- Bachelor of Engineering (Civil) (Honours)
- Bachelor of Engineering (Computer and Network Systems) (Honours)
- Bachelor of Engineering (Computer) (Honours)

Bachelor of Engineering (Computer and Network Systems) (Honours)

Engineer tomorrow’s interconnected computer systems today.

The Bachelor of Engineering (Computer and Network Systems) (Honours) provides you with technical knowledge and agility to respond to a rapidly changing marketplace. Develop the specialised skills to design and analyse hardware systems and algorithms for products such as mobile phones and gaming consoles through to aircraft flight control systems, unmanned vehicles and global telecommunications systems.

STUDY PROGRAM

First year
- Undertake interdisciplinary learning with the aim of meeting future development needs in civil engineering.
- Learn in purpose-built civil engineering labs and workshops.
- Use creativity and innovation to solve civil engineering problems.
- Bachelor of Engineering (Civil) (Honours)

PATHWAYS

Successful completion of the first year of the Bachelor of Engineering (Honours) – Flexible Entry provides guaranteed entry into this degree.

CAREER OPPORTUNITIES

Your degree is the first step towards a range of employment opportunities.
- Some potential occupations for those with a degree in this area as they progress through their career include:
 - computer systems engineer
 - software engineer developer.
- Potential employers include:
 - CSR Limited
 - Nextgen Services Pty Ltd
 - Australian Bureau of Statistics
 - IMPC
 - Macquarie Group.

FURTHER STUDY

Opportunities for further study include:
- Master of Engineering (Electronics)
- PhD.

STUDY ABROAD

There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES

- Bachelor of Engineering (Civil) (Honours)
- Bachelor of Engineering (Computer and Network Systems) (Honours)
- Bachelor of Engineering (Computer) (Honours)

* This degree offers a broad range of subjects, including electrical, electronic, control and instrumentation, which gave me a well-rounded understanding of measuring and control. The work experience component of the degree is really valuable."

Rebekah Reilly
Functional Safety Engineer at Aurecon
Bachelor of Engineering (Electrical) (Honours)

Power the machines of the future.

The Bachelor of Engineering (Electrical) (Honours) will provide you with a strong foundation in the systematic development of electrical systems, such as renewable power generation and motors. The degree looks to the future with an emphasis on renewable energy systems and electrical drive systems.

STUDY PROGRAM*

First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.
Second year
A typical second year might include:
• core topics in computer programming, electrical circuits and machines, engineering mathematics, automation and industrial control, analysis of engineering systems, electronic circuits, sensors and actuators, and electrical engineering principles.
Third year
A typical third year might include:
• core topics in electromagnetics, project management, professional skills, ethics and compliance, mechanics, and mathematics.
• a selection of electives in allied science and engineering areas.

PRACTICAL EXPERIENCE
The degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical professional skills and knowledge.

ACCREDITATION
This degree is provisionally accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord. Graduates meet the academic requirements for attaining chartered professional engineering status.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES
When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Science.

PATHWAYS
Successful completion of the first year of the Bachelor of Engineering (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

BACHELOR OF ENGINEERING (ELECTRONICS) (HONOURS)

Engineer the tiny circuits that enable big technology.

The Bachelor of Engineering (Electronics) (Honours) involves in-depth study of electronics – the enabling technology for today’s society. Electronic circuits are small processors that interpret signals and perform tasks. In this degree, you’ll learn the skills and knowledge to plan, design and build the electronic circuitry that is integral to an extensive range of high technology applications.

STUDY PROGRAM*

First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.
• core topics in computer programming, electrical circuits and machines, engineering mathematics, automation and industrial control, analysis of engineering systems, electronic circuits, sensors and actuators.

PRACTICAL EXPERIENCE
The degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical professional skills and knowledge.

ACCREDITATION
This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES
When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Science.

PATHWAYS
Successful completion of the first year of the Bachelor of Engineering (Electronics) (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

Bachelor of Engineering (Electrical) (Honours)

STUDY PROGRAM*

First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

PRACTICAL EXPERIENCE
The degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical professional skills and knowledge.

ACCREDITATION
This degree is provisionally accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES
When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Science.

PATHWAYS
Successful completion of the first year of the Bachelor of Engineering (Electrical) (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

Bachelor of Engineering (Electronics) (Honours)

STUDY PROGRAM*

First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

PRACTICAL EXPERIENCE
The degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical professional skills and knowledge.

ACCREDITATION
This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES
When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Science.

PATHWAYS
Successful completion of the first year of the Bachelor of Engineering (Electronics) (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

Bachelor of Engineering (Electrical) (Honours)

STUDY PROGRAM*

First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

PRACTICAL EXPERIENCE
The degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical professional skills and knowledge.

ACCREDITATION
This degree is provisionally accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES
When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Science.

PATHWAYS
Successful completion of the first year of the Bachelor of Engineering (Electrical) (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

Bachelor of Engineering (Electronics) (Honours)

STUDY PROGRAM*

First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

PRACTICAL EXPERIENCE
The degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical professional skills and knowledge.

ACCREDITATION
This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES
When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Science.

PATHWAYS
Successful completion of the first year of the Bachelor of Engineering (Electronics) (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

Bachelor of Engineering (Electrical) (Honours)

STUDY PROGRAM*

First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

PRACTICAL EXPERIENCE
The degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical professional skills and knowledge.

ACCREDITATION
This degree is provisionally accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES
When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Science.

PATHWAYS
Successful completion of the first year of the Bachelor of Engineering (Electrical) (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

Bachelor of Engineering (Electronics) (Honours)

STUDY PROGRAM*

First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

PRACTICAL EXPERIENCE
The degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical professional skills and knowledge.

ACCREDITATION
This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES
When choosing your preferences through SATAC, another Flinders degree you might want to include in your list is the Bachelor of Engineering Science.

PATHWAYS
Successful completion of the first year of the Bachelor of Engineering (Electronics) (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.
Bachelor of Engineering (Maritime) (Honours)

The Bachelor of Engineering (Maritime) (Honours) will prepare you to become a professional engineer in the maritime engineering industry. You’ll learn to design and manage the building of maritime vehicles, coastal engineering projects, port and harbour facilities, and offshore oil and gas installations. The first two years of the degree provide a common entry pathway to specialise in naval architecture, ocean engineering, or marine and offshore systems.

STUDY PROGRAM

The first two years of this degree are undertaken at Flinders University and the third and fourth years are undertaken at the Australian Maritime College, part of the University of Tasmania. The degree is awarded by the University of Tasmania.

First year

A typical first year might include:
- core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

Second year

A typical second year might include:
- core topics in engineering mathematics, analysis of engineering systems, mechanics and structures, fluid mechanics, dynamics, hydrostatics, thermodynamics and energy systems, ship design and construction, and offshore engineering.
- intensive workshop to gain your Mechanical Practice Certificate.
- practical and theoretical training to gain your Elements of Shipboard Safety Certificate.

Third year and honours

A typical third year and honours year requires you to transfer to the Australian Maritime College in Launceston and might include:
- advanced topics such as ships and underwater vehicles or yachts and small craft.
- other degree specialisations, such as marine engineering and offshore structures or ocean engineering.
- access to specialised hydrodynamic test facilities for your project and laboratory work.

ENTRY REQUIREMENTS

This course involves practical work on board a maritime vessel. It is an Australian Maritime Safety Authority requirement that students undertake a medical assessment and have a valid Elements of Shipboard Safety Certificate prior to going to sea. This certificate will be arranged at the commencement of the third year of study.

PRACTICAL EXPERIENCE

The degree provides you with practical experience that prepares you for the workplace:
- Undertake practical work on board a maritime vessel.
- Complete a professional work placement with a maritime engineering company as part of your studies.
- Develop practical skills in mechanics and structures, ship design, hydrodynamics and fluid mechanics, thermodynamics and energy engineering.

ACCREDITATION

This degree is accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord. Graduates meet the academic requirements for attaining chartered professional engineering status.

STUDY ABROAD

There are opportunities to take your studies overseas as part of your industry placement.

PREFERENCES

When choosing your preferences through SATAC, some other Flinders degrees you might want to include in your list are:
- Bachelor of Engineering Science
- Bachelor of Engineering (Mechanical) (Honours)

PATHWAYS

Successful completion of the first year of the Bachelor of Engineering (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites prior to transferring into your desired Bachelor of Engineering (Honours) program.

CAREER OPPORTUNITIES

Your degree is the first step towards a range of employment opportunities. Some potential occupations for those with a degree in this area as they progress through their career include:
- marine engineering officer
- combat systems officer
- marine valve engineer
- pipeline engineer (subsea)
- marine surveyor.

Potential employers include:
- Australian Maritime Safety Authority
- Department of Defence
- Australian Defence Force
- Raytheon Australia
- SYPAQ Systems.

FURTHER STUDY
Opportunities for further study include:
- Master of Engineering (Electronics)
- PhD.

Make waves in the maritime engineering industry.

**Knowledge of SACE stage two physics or equivalent

* SACE stage two specialist mathematics, mathematical methods or equivalent.

** Knowledge of SACE stage two physics or equivalent is assumed.

See the inside back cover for more information on your entry options and pathways, opportunities to enhance your degree, and how to apply.

Specialise in naval architecture, ocean engineering, or marine and offshore systems.

Access state-of-the-art experimental facilities at Flinders University and the Australian Maritime College in Launceston.

Developed to serve the needs of the maritime engineering design, construction and related industries.

Career opportunities available in Australia, Europe, USA, UK and Asia.

Nationally recognised integrated work placement gives you practical industry experience.

We’re deep into defence technology

Immersing ourselves in defence: making a difference.

This island continent we call home presents unique challenges for defence. It brings into play land, sea and air technology and puts this technology into situations where second best simply isn’t good enough.

Flinders is at the frontline of defence-oriented research and development in a myriad of different ways across our campuses.

Imagines a day very soon when we have unmanned warships patrolling our 132,000 kilometres of coastline. We are developing that capability now.

Our robotics team is making new advances that could keep our soldiers out of harm’s way. Our fibre optics technology is revolutionising battlefield communications, our engineers are evolving ways to enhance body mechanics to ensure our military personnel are at peak performance levels... we are even looking at making munitions and explosives more stable for longer.

flinders.edu.au/research/defence

DIVE! DIVE! DIVE!
Push mechanical systems to the limit.

The Bachelor of Engineering (Mechanical) (Honours) teaches you how to design, construct and operate mechanical systems. The degree encourages you to push the boundaries, preparing you for the future of mechanical systems engineering. Learn to apply the principles of physics, materials science and mathematics, and build depth of knowledge in materials, mechanics, design, thermodynamics and fluid mechanics.

STUDY PROGRAM* First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

Second year
A typical second year might include:
• core topics in engineering mathematics, analysis of engineering systems, mechanics and structures, fluid mechanics, dynamics, engineering materials, and thermodynamics and energy systems

• a mechanical practice certificate workshop

• a mechanical design project.

Third year
A typical third year might include:
• core topics in mechanics of machines, project management for engineering and science, control systems, solid mechanics, applied thermo-fluid dynamics, and workplace preparation

• a 20-week industry placement program.

Honours
A typical honours year might include:
• a major mechanical engineering honours thesis allowing high-performing students to progress to a higher degree by research
• topics in advanced mechanical design, and standards, ethics and compliance
• a selection of electives in allied science and engineering areas.

*Intended as a guide only. Check the course rule for the degree program on our course web pages regularly for the most comprehensive and up-to-date topic information.

PRACTICAL EXPERIENCE
This degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical skills in mechanics and dynamics, mechanics and structures, mechanics of machines, thermodynamics and energy systems, solid mechanics, control systems, project management, and fluid mechanics.
• Take advantage of opportunities to become involved in Formula SAE, Solar Car Challenge, UAV, and Mini Maker Faire.
• Enter the national Wear Warman Design Competition to test your robot/autonomous device against the best engineering groups in Australia.

ACREDITATION
This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PRE plaisAIRS
• core topics in computer organisation and project management for engineering and science, control systems, robotic systems, and workplace preparation
• a topic in the mechanics of machines or a mechanical design project
• a 20-week industry placement.

STUDY PROGRAM* First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

Second year
A typical second year might include:
• core topics in engineering mathematics, analysis of engineering systems, mechanics and structures, fluid mechanics, dynamics, engineering materials, and thermodynamics and energy systems

• a mechanical practice certificate workshop

• a mechanical design project.

Third year
A typical third year might include:
• core topics in mechanics of machines, project management for engineering and science, control systems, solid mechanics, applied thermo-fluid dynamics, and workplace preparation

• a 20-week industry placement program.

Honours
A typical honours year might include:
• a major mechanical engineering honours thesis allowing high-performing students to progress to a higher degree by research
• topics in advanced mechanical design, and standards, ethics and compliance
• a selection of electives in allied science and engineering areas.

*Intended as a guide only. Check the course rule for the degree program on our course web pages regularly for the most comprehensive and up-to-date topic information.

PRACTICAL EXPERIENCE
This degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical skills in robotics systems, control systems and engineering project management.
• Participate in robotic competitions such as the National Instrument Autonomous Robot Competition (NI-Arc), Autonomous Ground Vehicle Competition (AGVC), and Maritime RobotX Challenge.

ACREDITATION
This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord. Graduates meet the academic requirements for attaining chartered professional engineering status.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PRE plaisAIRS
• core topics in computer organisation and project management for engineering and science, control systems, robotic systems, and workplace preparation
• a topic in the mechanics of machines or a mechanical design project
• a 20-week industry placement.

STUDY PROGRAM* First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

Second year
A typical second year might include:
• core topics in engineering mathematics, analysis of engineering systems, mechanics and structures, fluid mechanics, dynamics, engineering materials, and thermodynamics and energy systems

• a mechanical practice certificate workshop

• a mechanical design project.

Third year
A typical third year might include:
• core topics in mechanics of machines, project management for engineering and science, control systems, solid mechanics, applied thermo-fluid dynamics, and workplace preparation

• a 20-week industry placement program.

Honours
A typical honours year might include:
• a major robotics engineering honours thesis allowing high-performing students to progress to a higher degree by research
• topics in autonomous systems, and standards, ethics and compliance
• a selection of electives in allied science and engineering areas.

*Intended as a guide only. Check the course rule for the degree program on our course web pages regularly for the most comprehensive and up-to-date topic information.

PRACTICAL EXPERIENCE
This degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical skills in robotics systems, control systems and engineering project management.
• Participate in robotic competitions such as the National Instrument Autonomous Robot Competition (NI-Arc), Autonomous Ground Vehicle Competition (AGVC), and Maritime RobotX Challenge.

ACREDITATION
This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord. Graduates meet the academic requirements for attaining chartered professional engineering status.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PRE plaisAIRS
• core topics in computer organisation and project management for engineering and science, control systems, robotic systems, and workplace preparation
• a topic in the mechanics of machines or a mechanical design project
• a 20-week industry placement.

STUDY PROGRAM* First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

Second year
A typical second year might include:
• core topics in engineering mathematics, analysis of engineering systems, mechanics and structures, fluid mechanics, dynamics, engineering materials, and thermodynamics and energy systems

• a mechanical practice certificate workshop

• a mechanical design project.

Third year
A typical third year might include:
• core topics in mechanics of machines, project management for engineering and science, control systems, solid mechanics, applied thermo-fluid dynamics, and workplace preparation

• a 20-week industry placement program.

Honours
A typical honours year might include:
• a major robotics engineering honours thesis allowing high-performing students to progress to a higher degree by research
• topics in autonomous systems, and standards, ethics and compliance
• a selection of electives in allied science and engineering areas.

*Intended as a guide only. Check the course rule for the degree program on our course web pages regularly for the most comprehensive and up-to-date topic information.

PRACTICAL EXPERIENCE
This degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical skills in robotics systems, control systems and engineering project management.
• Participate in robotic competitions such as the National Instrument Autonomous Robot Competition (NI-Arc), Autonomous Ground Vehicle Competition (AGVC), and Maritime RobotX Challenge.

ACREDITATION
This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord. Graduates meet the academic requirements for attaining chartered professional engineering status.

STUDY ABROAD
There are opportunities to take your studies overseas as part of your industry placement.

PRE plaisAIRS
• core topics in computer organisation and project management for engineering and science, control systems, robotic systems, and workplace preparation
• a topic in the mechanics of machines or a mechanical design project
• a 20-week industry placement.

STUDY PROGRAM* First year
A typical first year might include:
• core topics in electronics, professional skills, engineering design, engineering programming, engineering physics and materials, engineering mechanics, and mathematics.

Second year
A typical second year might include:
• core topics in engineering mathematics, analysis of engineering systems, mechanics and structures, fluid mechanics, dynamics, engineering materials, and thermodynamics and energy systems

• a mechanical practice certificate workshop

• a mechanical design project.

Third year
A typical third year might include:
• core topics in mechanics of machines, project management for engineering and science, control systems, solid mechanics, applied thermo-fluid dynamics, and workplace preparation

• a 20-week industry placement program.

Honours
A typical honours year might include:
• a major robotics engineering honours thesis allowing high-performing students to progress to a higher degree by research
• topics in autonomous systems, and standards, ethics and compliance
• a selection of electives in allied science and engineering areas.

*Intended as a guide only. Check the course rule for the degree program on our course web pages regularly for the most comprehensive and up-to-date topic information.

PRACTICAL EXPERIENCE
This degree provides you with practical experience that prepares you for the workplace:
• Undertake a 20-week industry placement program of structured work experience with a local, national or international organisation.
• Develop practical skills in robotics systems, control systems and engineering project management.
• Participate in robotic competitions such as the National Instrument Autonomous Robot Competition (NI-Arc), Autonomous Ground Vehicle Competition (AGVC), and Maritime RobotX Challenge.

ACREDITATION
This degree is fully accredited by Engineers Australia at the level of professional engineer. Professional engineering courses accredited by Engineers Australia are recognised internationally under the Washington Accord. Graduates meet the academic requirements for attaining chartered professional engineering status.
Bachelor of Engineering (Software) (Honours)

Combine the skill of engineering with the power of computer technology. The Bachelor of Engineering (Software) (Honours) is a future-oriented course that enables you to choose a course of study with either an electronics or computer science focus. It provides you with a solid foundation in the technical and professional skills and knowledge required to pursue a successful career in the software industry.

STUDY PROGRAM

First year

A typical first year might include:
- core topics in software engineering such as programming, digital and analog electronics, mathematics, and professional skills
- a choice of electronics or computer-based topics
- core topics in computer mathematics, computer programming, project management for engineering and science, software engineering, and workplace preparation
- a choice of either an electronics or computer-based topic
- a 20-week industry placement program.

Honours

A typical honours year might include:
- an advanced software engineering thesis allowing you to apply your knowledge and skills to a real-world problem
- a broad range of topics in your choice of specialisation
- further topics in your specialisation
- a broad range of topics in your choice of specialisation.

Second year

A typical second year might include:
- core topics in computer mathematics, computer programming, project management for engineering and science, software engineering, and workplace preparation
- a choice of either an electronics or computer-based topic
- a 20-week industry placement program.

PATHWAYS

Successful completion of the first year of the Bachelor of Engineering (Honours) – Flexible Entry provides guaranteed entry into this degree. You may also consider the Bachelor of Engineering Science pathway to develop your knowledge of the maths and physics prerequisites to transfer into your desired Bachelor of Engineering (Honours) program.

COMBINED DEGREES

Expand your career options by combining this degree with a bachelor degree in science, engineering, information technology or environment. Contact Flinders Connect for advice on available combinations.

PRACTICAL EXPERIENCE

You will develop your practical experience that prepares you for the workplace:
- Conduct industry placement programs
- Engage in projects with local, national or international organisations
- Develop practical skills in programming, testing, network engineering operating systems, design and automation, and signals and systems.

CAREER OPPORTUNITIES

Your degree is the first step towards a range of employment opportunities. Some potential occupations for those with this degree in this area as they progress through their career include:
- Software developer
- Analyst
- Data scientist
- Systems engineer
- Cybersecurity specialist
- Artificial intelligence developer
- Machine learning engineer
- Robotics engineer
- Game developer
- App developer
- Web developer
- Database administrator
- IT consultant
- Project manager
- Systems architect
- DevOps engineer
- Cybersecurity analyst
- Network administrator
- Cybersecurity engineer
- Information security specialist
- IT manager
- IT leader
- IT director
- IT executive
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information security officer (CISO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information officer (CIO)
- Chief technology officer (CTO)
- Chief information o
Unlock more career options by combining degrees.

By combining your degree with a qualification in another discipline, you’ll connect diverse knowledge in unique ways and develop specialised abilities to help you stand out from the pack. Studying a combined degree at Flinders is the key to enhancing your career opportunities.

Your flexible entry point to an engineering degree.

The Bachelor of Engineering (Honours) – Flexible Entry prepares you with one year of study in the fundamentals of science and engineering – including engineering design, engineering physics, materials and mechanics, computer programming, electronics, and mathematics – before transferring to a Flinders Bachelor of Engineering (Honours).

Bachelor of Engineering (Biomedical) (Honours)/Bachelor of Engineering (Electronics) (Honours)

The developers of many medical devices require substantial knowledge of electronic systems. This combination provides you with the knowledge to create advanced electronic devices that can be used in healthcare applications.

Bachelor of Engineering (Roboticics) (Honours)

This combination provides a step up for students wishing to study mechatronics but also wishing to complete a full mechanical and a full robotics degree. By graduating with this combination, you will be able to contribute solutions to difficult industrial problems involving highly mechanised advanced manufacturing systems.

Bachelor of Engineering (Biomedical) (Honours)/Master of Engineering (Biomedical) (Honours)

The Bachelor of Science (Honours) (Chemical Sciences) can also be completed as a double degree with the Master of Engineering (Materials). The Bachelor of Science (Honours) (Chemical Sciences)/Master of Engineering (Materials)

Engineer your way into a masters degree.

Postgraduate biomedical and electronics pathways

At Flinders, high achieving students can use their Bachelor of Engineering (Biomedical) or Bachelor of Engineering (Mechanical) as a pathway into a Master of Engineering (Biomedical). Or you can use the Bachelor of Engineering (Robotics) as a pathway into a Master of Engineering (Electronics).

By adding one year to your study, you can fast-track your way to an internationally recognised engineering research degree that will open up even more career opportunities.

Bachelor of Engineering (Biomedical) (Honours)/Master of Engineering (Biomedical) (Honours)

The majority of year 12 applicants enter university via the traditional competitive entry method, where offers are made to eligible applicants with the highest ATARs until all places in the degree area are filled. The 2017 required ATAR for each degree is provided only as a guide for 2018 as it may change from year to year.

Bachelor of Engineering (Electronics) (Honours)/Master of Engineering (Electronics) (Honours)

Successful completion of the first year to disciplinary, social and cultural boundaries.

Bachelor of Engineering (Robotics) (Honours)/Master of Engineering (Electronics) (Honours)

The Bachelor of General Studies is a flexible degree that provides a sound basis of knowledge in an area of your choice. It is designed to prepare you with communication skills, a firm grasp of ethics, and the confidence to make connections across technological, social and cultural boundaries.

How to apply

Applicants need to apply through the South Australian Tertiary Admissions Centre (SATAC): satac.edu.au

To find out more about your entry options and pathways to Flinders, visit: findlers.edu.au/pathsways

PATHWAYS TO FLINDERS

At Flinders we recognize that every prospective student is an individual and that what works for one might not be right for another.

That’s why we provide various entry pathways into Flinders University and your preferred degree. You’re encouraged to explore your options and find the entry path that’s right for you.

Flinders UniLeap

Flinders UniLeap can help you qualify for entry into a Flinders University degree in four weeks. It’s a free intensive four-week program that has been designed for school leavers, to develop their independent learning skills and prepare them for university study.

Foundation Studies

The Foundation Studies program has been designed to introduce you to university study in a supportive learning environment. Open to people from all backgrounds, Foundation Studies provides a pathway to gain entry into many degrees at Flinders and offers guaranteed entry into some degrees.

TAFE/SA dual offers

You can study 2 years of TAFE SA and the Bachelor of Engineering (Biomedical) or Bachelor of Engineering (Roboticics) as a pathway into a Master of Engineering (Biomedical) or Master of Engineering (Electronics). The Bachelor of Letters is available to study alongside any degree at Flinders and enables you to graduate with two qualifications.

Combined degrees

A combined degree is a combination of two Flinders bachelor degrees. As a combined degree graduate you will have two qualifications in just one to one-and-a-half years of study. Our combined degree programs are designed to enhance your educational, academic and professional qualifications while minimising the cost and length of your studies.

Bachelor of Letters

The Bachelor of Letters is available to study to complete a first degree with the Master of Engineering (Materials).

Bachelor of Science/Master of Engineering

A combined degree is a combination of two degrees at Flinders and offers guaranteed entry into some degrees.

Bachelor of Arts/Master of Engineering

The Bachelor of General Studies is a flexible degree that provides a sound basis of knowledge in an area of your choice. It is designed to prepare you with communication skills, a firm grasp of ethics, and the confidence to make connections across technological, social and cultural boundaries.

Bachelor of General Studies

The Bachelor of General Studies is a flexible degree that provides a sound basis of knowledge in an area of your choice. It is designed to prepare you with communication skills, a firm grasp of ethics, and the confidence to make connections across technological, social and cultural boundaries.

Bachelor of Social Sciences

The Bachelor of Social Sciences (Honours) (Chemical Sciences)/Master of Engineering (Materials)

GET MORE OUT OF YOUR DEGREE

Whatever you’re studying, Flinders gives you the opportunity to do more with your degree, giving you a competitive edge with a minimum of extra time and effort.

International students

International students should contact: +61 8 8201 2727 | findlers.edu.au/international | internationalapply@findlers.edu.au

WHEN CAN I START?

Flinders offers two admissions cycles each year for undergraduate degrees.

Semester 1 – February start. Applications open in August for commencement in the following year.

Semester 2 – July start. Mid-year applications open in June for commencement in July the following year.

HOW TO APPLY

Applicants need to apply through the South Australian Tertiary Admissions Centre (SATAC): satac.edu.au

To find out more about your entry options and pathways to Flinders, visit: findlers.edu.au/pathsways

Contact us

Our friendly staff are available to answer your questions:

1300 354 633 (local call cost) | askfindlers@findlers.edu.au | findlers.edu.au/ask

International students should contact: +61 8 8201 2727 | findlers.edu.au/international | internationalapply@findlers.edu.au

Every effort has been made to ensure the information in this brochure is accurate at the time of publication: May 2017. Flinders University reserves the right to alter any course or topic contained herein without prior notice. Alterations are reflected in the course information available on the University’s website, CRICOS No. 00116A

Bachelor of Engineering (Biomedical) (Honours)/Bachelor of Engineering (Electronics) (Honours)

SATAC CODE: 224832

YEARS FULL-TIME: 4

PREREQUISITES: Yes

ASSESSED KNOWLEDGE: Yes

GUARANTEED ENTRY ATAR: 70.00

Bachelor of Engineering (Robotics) (Honours)

SATAC CODE: 224932

YEARS FULL-TIME: 4

PREREQUISITES: Yes

ASSESSED KNOWLEDGE: Yes

GUARANTEED ENTRY ATAR: 70.00

Bachelor of Engineering (Biomedical) (Honours)

SATAC CODE: 224941

YEARS FULL-TIME: 5

PREREQUISITES: Yes

GUARANTEED ENTRY ATAR: 80.00

Bachelor of Engineering (Biomedical) (Honours)/Master of Engineering (Biomedical) (Honours)

SATAC CODE: 224861

YEARS FULL-TIME: 5

PREREQUISITES: Yes

GUARANTEED ENTRY ATAR: 85.00

Bachelor of Engineering (Electronics) (Honours)/Master of Engineering (Electronics) (Honours)

SATAC CODE: 224871

YEARS FULL-TIME: 5

PREREQUISITES: Yes

GUARANTEED ENTRY ATAR: 95.00

Bachelor of Engineering (Mechanical) (Honours)/Bachelor of Engineering (Biomedical) (Honours)

SATAC CODE: 224942

YEARS FULL-TIME: 5

PREREQUISITES: Yes

GUARANTEED ENTRY ATAR: 95.00

Bachelor of Engineering (Mechanical) (Honours)

SATAC CODE: 224951

YEARS FULL-TIME: 5

PREREQUISITES: Yes

GUARANTEED ENTRY ATAR: 95.00

Bachelor of Engineering (Materials)

SATAC CODE: 224961

YEARS FULL-TIME: 4

PREREQUISITES: Yes

GUARANTEED ENTRY ATAR: 75.00

Bachelor of Engineering (Robotics) (Honours)

SATAC CODE: 224971

YEARS FULL-TIME: 4

PREREQUISITES: Yes

GUARANTEED ENTRY ATAR: 75.00

Bachelor of Science (Honours)

SATAC CODE: 224981

YEARS FULL-TIME: 4

PREREQUISITES: Yes

GUARANTEED ENTRY ATAR: 95.00