Mid-year entry is the opportunity for admission to some of Flinders’ most popular degrees and for you to begin your university studies. Applications for mid-year entry open on 2 May 2011 and classes commence on 25 July 2011. Please see the information below regarding the application process.

Flinders appreciates the diversity of the skills and experience that students bring to University. We recognise that students have come from a variety of backgrounds to study at University. You can apply for a place in our degrees on the basis of your:

- SACE/Yr 12/Interstate Yr 12, International Baccalaureate, or interstate/overseas equivalent;
- Higher Education Transfers - current/previous university studies;
- TAFE/VET qualifications - certificate III or higher (with the exception of Bachelor of Laws and Legal Practice combined degrees);
- Special Tertiary Admission Test (STAT) results - for students aged 18 or over;
- And Flinders Foundation course (or equivalent qualifications).

Guaranteed Entry

Achieve an ATAR rank equal or above the published guaranteed entry ATAR score and you will be guaranteed a place at Flinders. All you need to do is ensure you have listed Flinders courses first in your preferences and you will be offered a place in the highest Flinders course preference that you are eligible for in 2012. For further information see: www.flinders.edu.au/guaranteedatar

TAFELink

Flinders offers guaranteed entry to selected courses for applicants who have completed a TAFE/VET certificate 4 or higher level qualification (provided the applicant meets the course prerequisite requirements). For further information see: www.flinders.edu.au/tafelink

To discuss which entry pathway will work for you please contact us today.

For Prospective Flinders Students

Application Process
All prospective applicants must apply online through the South Australian Tertiary Admissions Centre (SATAC) at www.satac.edu.au/uniweb
Applications will be assessed and offers will be generated by SATAC.

Special Tertiary Admissions Test (STAT)
The scheme is targeted at:

- people who did not successfully complete Year 12 at school and who are finding it difficult to embark on a satisfying career without further study;
- people who did complete Year 12 but not at a high enough standard for admission to the course of their choice and
- people who are already established in careers, perhaps having studied at apprenticeship level or having pursued a TAFE/VET course.

Potential applicants have the option to sit the Special Tertiary Admissions Test (STAT). To be eligible to apply for the STAT you must:

- be aged 18 or over before 1 July, 2011;
- if you have studied at higher education level and, in all attempts at higher education study, you have accumulated more than the equivalent of two full-time years of study, you must wait until 2 years have passed since you were last enrolled in a higher education course.

For date, time and location of STAT sittings please contact SATAC, ph: (08) 8224 4000 or web: www.satac.edu.au

Key Dates
For key application dates visit www.flinders.edu.au/future-students/how-to-apply/dates.cfm
For Current Flinders Students

Applicants may only be considered on the basis of the qualifications presented to SATAC at the time they applied for their current course, or on their Flinders University Grade Point Average (GPA). Students must have completed 18 units or more of their degree to be considered on the basis of GPA and have completed a minimum of 36 units of their degree to be to be considered for Flinderslink.

Flinders students can be guaranteed entry to another Flinders course if they hold a nominated Grade Point Average (GPA) or higher via our Flinderslink program. More information about Flinderslink including the courses to which it applies can be found at: www.flinders.edu.au/flinderslink

Students wishing to be considered on additional qualifications must apply through SATAC.

Applicants who wish to sit a Special Tertiary Admissions Test (STAT) must apply through SATAC irrespective of whether they are currently enrolled at Flinders University in 2011.

Application Process

Internal transfer applications are available from and are made directly to the Admissions/Prospective Students Office.

Details on the SATAC Application Process are provided under information for Prospective Flinders Students above.

Enrolment will be coordinated by Enrolment Services.

Key Dates

For key application dates visit www.flinders.edu.au/future-students/how-to-apply/internal-transfer/

Courses Available *

Applications for Commonwealth Supported Places will be accepted for mid-year entry into the following courses:

- Bachelor of Business (International Business)
- Bachelor of Business (International Business) combined degrees
- Bachelor of Business (Management)
- Bachelor of Business (Management) combined degrees
- Bachelor of Business (Marketing)
- Bachelor of Business (Marketing) combined degrees
- Bachelor of Business combined degrees
- Bachelor of Commerce (Accounting) or Bachelor of Commerce (Finance)
- Bachelor of Commerce (Accounting) or Bachelor of Commerce (Finance) combined degrees
- Bachelor of Computer Science
- Bachelor of Disability and Community Rehabilitation
- Bachelor of Disability and Community Rehabilitation – external
- Bachelor of Education (Early Childhood)/ Bachelor of Arts **
- Bachelor of Education (Middle and Secondary Schooling) Bachelor of Arts **
- Bachelor of Education (Primary R-7)/ Bachelor of Arts **
- Bachelor of Engineering (Biomedical)
- Bachelor of Engineering (Biomedical) combined degrees
- Bachelor of Engineering (Biomedical) Master of Engineering (Biomedical)
- Bachelor of Engineering (Computer Systems)
- Bachelor of Engineering (Computer Systems) combined degrees
- Bachelor of Engineering (Electronics)
- Bachelor of Engineering (Electronics) combined degrees
- Bachelor of Engineering (Environmental Technologies)
- Bachelor of Engineering (Environmental Technologies) combined degrees
- Bachelor of Engineering (Mechanical)
- Bachelor of Engineering (Mechanical)/Master of Engineering (Biomedical)
- Bachelor of Engineering (Robotics)
- Bachelor of Engineering (Robotics) combined degrees
- Bachelor of Engineering (Robotics)/Master of Engineering (Electronics)
- Bachelor of Engineering (Software)
- Bachelor of Engineering (Software) combined degrees
- Bachelor of Engineering Science
- Bachelor of Environmental Management
- Bachelor of Government and Public Management
- Bachelor of Government and Public Management (TAFE/VET pathway)
- Bachelor of Information Technology
- Bachelor of International Studies
- Bachelor of International Tourism
Bachelor of Applied Geographical Information Systems

SATAC Code: 214591
Duration: 3 years F; equivalent P

Geographical Information Systems (GIS) is a computer-based system capable of integrating, editing, sharing, modelling, and displaying geographically referenced information. It allows users to create interactive queries, analyse the information, edit data, create maps and present the results of these operations.

GIS is used extensively across a range of areas and its applications are broad - from scientific investigations to criminology, history, sales, marketing, route planning and logistics.

The course provides a flexible and progressive approach to the combination of GIS, remote sensing, information technology (IT) and another full major area of study of a student’s choice from a selected list. This unique approach allows students to choose a major in areas such as biological sciences, environmental studies, earth sciences, geography, archaeology and criminal justice. The incorporation of a major sequence in this course reflects an increasing need for multi-disciplinary graduates who have advanced skills in the application of GIS, remote sensing and IT.

The application of GIS and modelling to predict outcomes, prioritise management strategies and quantify risks, is becoming increasingly important in government agencies and private organisations resulting in demand for these skills.

GIS is used extensively across a range of areas and graduate employment opportunities exist in biodiversity and natural resource management, urban and regional planning, primary industries, mining and exploration, archaeology, transportation, defence, infrastructure management, law enforcement and many other disciplines where skills in GIS and IT are now increasingly favoured.

Program Structure: this course has been developed in consultation with the industries likely to employ graduates. The first year consists of introductory IT, GIS, elective topics, major sequence subjects and a GIS field camp. The second year includes GIS, remote sensing, statistics, major sequence topics and importantly, an industry placement of 120 hours over the summer break where the students gain experience working in the industry. The third year consists of Advanced Digital Image Analysis, GIS modelling, major sequence topics, and a major project that allows each student to apply their GIS, remote sensing and IT knowledge in an exciting and relevant area of interest. Students who are eligible are also encouraged to consider Honours.

Professional Recognition: graduates may apply for professional recognition by the Spatial Sciences Institute.
Bachelor of Archaeology

SATAC Code: 214021
Duration: 3 years F; equivalent P

This course is designed to provide students with a substantial grounding in the theoretical and practical aspects of archaeology. Archaeologists are interested in the relationships between material objects, culture and human behaviour in contexts ranging from early hominin activities in Africa five million years ago, to contemporary urban and rural lifeways. Archaeology crosses the modern divide between science and the humanities, incorporating such diverse fields of study as anthropology, art history, biological sciences, earth sciences, environmental sciences, geography, heritage management, history, human evolution and modern material culture. The course prepares students for professional careers in archaeology in a wide range of settings including Aboriginal communities, government, independent consultancies, museums, private industry and universities.

Program Structure: in first year students complete a Professional English topic and two Archaeology topics chosen from: Introduction to Archaeology, World Archaeology and Cultural Anthropology. In addition they are able to undertake a range of non-archaeology based elective topics. In later years, students are required to complete a number of core Archaeology topics, as well as being able to enrol in a variety of specialist electives, such as Archaeological Science, Historical Archaeology, Maritime Archaeology and Indigenous Archaeology. At all levels of the program students are able to include practical field and laboratory based topics and training. The degree draws upon the expertise of all three universities within South Australia.

Professional Recognition: an Honours degree requiring a fourth year of study or a Graduate Diploma requiring one further year of study is available and is required for membership of professional associations such as The Australian Association of Consulting Archaeologists.

Bachelor of Arts

SATAC Code: 214031
Duration: 3 years F; equivalent P

This course provides a high quality education suitable for today's society, featuring both depth of study and breadth of knowledge. The BA's flexibility allows students to either: explore in-depth a single field of study (up to two-thirds of a student's topics may be concentrated in a chosen field); or range widely and study several different fields of study (the BA allows students to graduate with one or two majors). The course produces flexible, literate, independent and well-informed graduates, equipped with the transferable skills highly valued in the workforce. These include: communication and presentation skills (oral, written, electronic, graphic); skills in independent research and critical analysis; team work and interpersonal skills (including an understanding of cultural diversity); management and planning skills (including time and self-management skills); intellectual and creative skills; and computer literacy. BA graduates have the potential to become managers and leaders in the rapidly changing workforce of the 21st century.

Program Structure: following a first year in which students will be exposed to at least three and usually four different areas of study, at least two of these will be taken to the second year of studies and at least one to third year. The remaining studies may be used to widen exposure to other areas of study or to consolidate studies in chosen specialities.

Bachelor of Behavioural Science (Psychology)

SATAC Code: 214051
Duration: 3 years F; equivalent P

This course offers a pathway towards a career as a psychologist. It combines formal studies in psychology with studies in a related specialist area which is also concerned with human behaviour. This provides graduates with a broad range of skills which will enable them to be effective communicators and problem solvers - vital for careers which involve working with people. Graduates are eligible to apply for entry into the further study necessary to work as a psychologist and well prepared for a career in a wide range of fields (eg behavioural ecologist, crime prevention officer, disability support officer and community development officer). With an additional education qualification, graduates may be eligible to teach psychology at secondary school level.

Program Structure: the psychology major includes core studies in biological influences on behaviour, cognitive processes, learning, personality, social influences and development across the lifespan and advanced studies in topics such as clinical psychology, eyewitness memory, and body image. In addition to psychology, students pick a second area in which to specialise. Options are: Biology, Computer Studies, Criminal Justice, Disability and Community Rehabilitation, Health Studies, Legal Studies, Management, Neuroscience, Philosophy, Public Policy Studies, Sociology and Women's Studies. Students can apply to complete an Honours program in psychology or in their specialist area.

Professional Recognition: for registration as a psychologist in South Australia, students must complete an Honours program in psychology and either two years of supervised
Bachelor of Business

SATAC Code: 214761
Duration: 3 years F; equivalent P

This generalist Business degree allows students to acquire a broad and diverse knowledge of business without specialisation in a specific area. It will be of interest to those who are planning to start their own business, or who plan to work in private or public sector organisations. The range of topics will cover all the functional areas of business and management and deliver graduates with strong practical and operational skills.

The first year core topics provide grounding for all areas of business, and include Accounting Principles, Law for Business, Economics for Business, Management, People and Organisations, and Quantitative Methods. The capstone topic Strategic Management is paramount to the decisions that impact across all operations of business.

Program Structure: the course structure requires students to undertake a number of core topics and to complete 45 units of business related topics and a further 36 units of electives.

Bachelor of Business (Management)

SATAC Code: 224361
Duration: 3 years F; equivalent P

Good management is essential to accomplishing success in any business operation. Management encompasses planning, leading, directing and controlling the resources within an organisation. Managers in our modern world require diverse skills to address sustainable and responsible business practices.

The Management specialisation covers all major areas of business management including human resource management, marketing, organisational and sustainable resource management.

It provides grounding in the essentials for Business, with topics such as Accounting Principles, Law for Business, Economics for Business, Management, People and Organisations, and Quantitative Methods forming the basis of the degree. The capstone topic Strategic Management is paramount to the decisions that impact across all operations of business.
inspiring achievement
Combined degree applicants must include the SATAC code and a stream code. Only one stream code can be entered. As the cut-off rank will be the same, regardless of the non-Business course nominated, applicants’ chances of selection will not be affected by which stream code they enter. For information about the Bachelor of Business course see 214761.

Business can be combined with Laws and Legal Practice, Commerce (Accounting) or Commerce (Finance). To be considered for entry applicants must apply for the Bachelor of Laws and Legal Practice combined degrees (214442) or Bachelor Commerce (Accounting) or Commerce (Finance) (214082).

Bachelor of Business (Business Economics) combined degrees

SATAC Code: 224382
Duration: 5.5 years F; equivalent P with Law, else 4 years F; equivalent P

Combined degree applicants must include the SATAC code and a stream code. Only one stream code can be entered. As the cut-off rank will be the same, regardless of the non-Business course nominated, applicants’ chances of selection will not be affected by which stream code they enter. For information about the Bachelor of Business (Business Economics) course see 214381.

Business can be combined with Laws and Legal Practice, Commerce (Accounting) or Commerce (Finance). To be considered for entry applicants must apply for the Bachelor of Laws and Legal Practice combined degrees (214442) or Bachelor Commerce (Accounting) or Commerce (Finance) (214082).

Bachelor of Business (Entrepreneurship) combined degrees

SATAC Code: 224392
Duration: 5.5 years F; equivalent P with Law, else 4 years F; equivalent P

Combined degree applicants must include the SATAC code and a stream code. Only one stream code can be entered. As the cut-off rank will be the same, regardless of the non-Business course nominated, applicants’ chances of selection will not be affected by which stream code they enter. For information about the Bachelor of Business (Entrepreneurship) course see 224391.
Business can be combined with Laws and Legal Practice, Commerce (Accounting) or Commerce (Finance). To be considered for entry applicants must apply for the Bachelor of Laws and Legal Practice combined degrees (214442) or Bachelor Commerce (Accounting) or Commerce (Finance) (214082).

Bachelor of Business (Human Resource Management) combined degrees

SATAC Code: 224402
Duration: 5.5 years F; equivalent P with Law, else 4 years F; equivalent P

Combined degree applicants must include the SATAC code and a stream code. Only one stream code can be entered. As the cut-off rank will be the same, regardless of the non-Business course nominated, applicants’ chances of selection will not be affected by which stream code they enter. For information about the Bachelor of Business (Human Resource Management) course see 224401.

Business can be combined with Laws and Legal Practice, Commerce (Accounting) or Commerce (Finance). To be considered for entry applicants must apply for the Bachelor of Laws and Legal Practice combined degrees (214442) or Bachelor Commerce (Accounting) or Commerce (Finance) (214082).

Bachelor of Business (International Business) combined degrees

SATAC Code: 224412
Duration: 5.5 years F; equivalent P with Law, else 4 years F; equivalent P

Combined degree applicants must include the SATAC code and a stream code. Only one stream code can be entered. As the cut-off rank will be the same, regardless of the non-Business course nominated, applicants’ chances of selection will not be affected by which stream code they enter. For information about the Bachelor of Business (International Business) course see 224411.

Business can be combined with Laws and Legal Practice, Commerce (Accounting) or Commerce (Finance). To be considered for entry applicants must apply for the Bachelor of Laws and Legal Practice combined degrees (214442) or Bachelor Commerce (Accounting) or Commerce (Finance) (214082).

Bachelor of Commerce (Accounting), Bachelor of Commerce (Finance)

SATAC Code: 214081
Duration: 3 years F; equivalent P

This course provides a foundation for career paths in accounting or finance and students will graduate with either a Bachelor of Commerce (Accounting) or Bachelor of Commerce (Finance). The course provides core studies in a range of topics related to business and enables students to satisfy the admission requirements of accounting and finance professional bodies. Applicants seeking entry to either of the specialisations use the SATAC code 214081.

Program Structure: the first year includes the core topics of Accounting Principles, Information Systems, Quantitative Methods, Law for Business, Economics for Business, and Business Communication. In second and third years students complete a specialisation in either accounting or finance, with the capstone topic Governance, Sustainability and Ethics taught across both.

Professional Recognition: students can tailor their degree to suit the needs and the admission requirements of professional bodies such as the Institute of Chartered Accountants in Australia, CPA Australia and the National Institute of Accountants.

Bachelor of Commerce (Accounting), Bachelor of Commerce (Finance) combined degrees

SATAC Code: 214082
Duration: 5.5 years F; equivalent P with Law, else 4 years F; equivalent P

Combined degrees are available with Arts, Business (Business Economics), Business (Entrepreneurship), Business (Human Resource Management), Business (International Business), Business (Management), Business (Marketing), Environmental Management, Government and Public Management, Information Technology, Laws and Legal Practice, or International Studies.

Combined degree applicants must include the SATAC code and a stream code. Only one stream code can be entered. As the cut-off rank will be the same, regardless of the non-Commerce course nominated, applicants’ chances of selection will not be affected by which stream code they enter. For information about the Bachelor of Commerce course see 214081.
Throughout the degree, students have the opportunity to participate in group projects and attend guest lectures by computing and information technology professionals.

Professional Recognition: this course has full Professional Accreditation with the Australian Computer Society.

Bachelor of Disability and Community Rehabilitation

SATAC Code: 214101
Duration: 4 years F; equivalent P

This course promotes the philosophy that persons with disabilities should be fully included in community life. Therefore the course provides graduates with the values, knowledge and skills that will allow them to:

- promote the physical and emotional development of people with disabilities;
- teach functional skills such as communication and language, self-care and domestic skills, social and recreational skills, and employment skills;
- provide case management services to people with disabilities;
- provide counselling support to people with disabilities;
- work with families and care-givers to enhance the developmental education and quality of life of people with disabilities;
- liaise and work with community services and other professionals;
- facilitate self advocacy and/or negotiate on behalf of people with disabilities;
- assist individuals with disabilities to access and maintain meaningful employment experiences;
- work independently or as part of a team.

On completion of this course graduates become trained developmental educators and are qualified to work in the field of service provision for people with diverse needs, including developmental and acquired disabilities.

Program Structure:

Students gain a strong theoretical understanding and practical experience in the design of efficient reliable software to meet industry requirements, and of the hardware on which that software runs. There is a strong emphasis both on the fundamentals of computing and on practical skills and teamwork. An Honours year is available to students who complete the course with a credit average or better.

In first year, students gain skills in the core computing technologies, and knowledge of general computing and introductory programming. Some of this is common to the Bachelor of Information Technology course and students who are performing well can transfer between the two awards with minimal loss of time. In second and third year, students further develop their expertise in programming and software development, and are introduced to key facets of computer systems. In the final year students can also choose to undertake a Computer Science project where they further build on the practical experiences developed during the course.

Bachelor of Computer Science

SATAC Code: 214821
Duration: 3 years F; equivalent P

Prerequisites: Mathematical Methods or Mathematical Studies

Computing has become vital to all areas of science and technology. It also plays an increasingly important role in commercial and social life. Computer Science is the study and creation of computational systems, as well as specialised areas such as operating systems, networks, databases, graphics, bioinformatics, data security and artificial intelligence.

This award provides students with a broad background in the theory and practice of programming and computer systems, allowing students to develop technical expertise, professional skills and in-depth knowledge in the discipline. Computer science professionals (and computer science courses) can be distinguished from information systems professionals (and our information technology course) by the extent to which the focus is on the computer as a sophisticated tool rather than as a component of a broader information system.

Program Structure: students gain a strong theoretical understanding and practical experience in the design of efficient reliable software to meet industry requirements, and of the hardware on which that software runs. There is a strong emphasis both on the fundamentals of computing and on practical skills and teamwork. An Honours year is available to students who complete the course with a credit average or better.

In first year, students gain skills in the core computing technologies, and knowledge of general computing and introductory programming. Some of this is common to the Bachelor of Information Technology course and students who are performing well can transfer between the two awards with minimal loss of time. In second and third year, students further develop their expertise in programming and software development, and are introduced to key facets of computer systems. In the final year students can also choose to undertake a Computer Science project where they further build on the practical experiences developed during the course.
1. Specialisations - choose from topics offered within the Department of Disability Studies or any relevant topic offered by the University at the appropriate level

2. Honours - in Disability Studies

Bachelor of Disability and Community Rehabilitation (External)

SATAC Code: 214105
Duration: 4 years FX; equivalent PX
Entry Requirements: additional to meeting the University’s normal entry requirements, applicants must be working within the disability area or have good contact with a disability agency that will allow them to undertake their practice.

This course promotes the philosophy that persons with disabilities should be fully included in community life. Therefore the course provides graduates with the values, knowledge and skills that will allow them to:

- promote the physical and emotional development of people with disabilities;
- teach functional skills such as communication and language, self-care and domestic skills, social and recreational skills, and employment skills;
- provide case management services to people with disabilities;
- provide counselling support to people with disabilities;
- work with families and care-givers to enhance the developmental education and quality of life of people with disabilities;
- liaise and work with community services and other professionals;
- facilitate self advocacy and/or negotiate on behalf of people with disabilities;
- assist individuals with disabilities to access and maintain meaningful employment experiences;
- work independently or as part of a team.

On completion of this course graduates become trained developmental educators and are qualified to work in the field of service provision for people with diverse needs, including developmental and acquired disabilities.

Program Structure: the course has a multi-disciplinary focus, with contributions from special education, psychology, sociology, health and welfare. Theory and practice are closely integrated throughout the course enabling graduates to be effective practitioners in the field. Consequently, graduates are required to successfully complete field practicum throughout the degree.

During the third year of the Bachelor of Disability and Community Rehabilitation students have the opportunity to choose between two study options available in the fourth year of the degree, which are:

1. Specialisations - choose from topics offered within the Department of Disability Studies or any relevant topic offered by the University at the appropriate level

2. Honours - in Disability Studies

Bachelor of Education (Early Childhood)/Bachelor of Arts

SATAC Code: 214751
Duration: 4 years F; equivalent P

This double degree is designed to prepare early childhood educators (birth to age 8). Graduates of this double degree will be awarded a Bachelor of Education (Early Childhood Education) and a Bachelor of Arts. Students will be provided with the background and skills necessary to enter the early childhood education profession with confidence and competence. Students will gain knowledge of selected Bachelor of Arts topics, curriculum studies and theories of education and undertake professional practice which brings together theory and practice in early childhood settings (eg childcare centres, kindergartens, pre-school and year levels Reception to Year 2).

Program Structure: students will complete a major and a minor in two Bachelor of Arts subject disciplines plus other Arts subjects. Students will also study education topics which include education studies, curriculum studies and early childhood studies necessary for teaching in early childhood settings, and professional practice in early childhood settings.

Professional Recognition: this double degree provides an academic qualification which will enable graduates to apply for teacher registration in South Australia, interstate and some overseas countries. Applicants need to check interstate registration requirements as they may change.

Bachelor of Education (Middle and Secondary Schooling)/Bachelor of Arts

SATAC Code: 214981
Duration: 4 years F; equivalent P

This double degree is designed to prepare middle and secondary school teachers (Years 6 to 12). Graduates of this double degree will be awarded a Bachelor of Education (Middle and Secondary Schooling) and a Bachelor of Arts. Students will be provided with the background and skills necessary to enter the teaching profession with confidence and competence. Students will gain knowledge of curriculum studies and education studies and undertake professional experience which brings together theory and practice in school settings. All students will undertake a common program of study in the first two years, and for the last two years students will opt to follow the Middle Schooling Strand (Years 6 to 10) or the Secondary Schooling Strand (Years 8 to 12).
Bachelor of Engineering (Biomedical)

SATAC Code: 214771
Duration: 4 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies
Assumed Knowledge: Stage 2 Physics

Biomedical engineering involves using electronics and computer systems to improve health care and health services to enhance the quality of human life. Students will gain a solid education in Engineering and Medical Science and develop skills to investigate, plan, design, manufacture and maintain systems and equipment used in all aspects of health care.

The course covers a range of fields including medical devices, medical imaging, physiological signal processing, biomechanics and biomaterials. Biomedical engineering results in products such as diagnostic devices, biocompatible prostheses, medical devices, and imaging equipment such as MRIs and EEGs. It also assists in the development of tools for the training of medical professionals.

Graduates often work in teams with health professionals and medical specialists and an increasing number of private sector companies which are designing and manufacturing medical devices.

Program Structure: students will complete a major and a minor in two Bachelor of Arts subject disciplines plus other Arts subjects. Students will also study education topics which include education studies, curriculum studies necessary for teaching in middle or secondary schools and professional practice placements. Students may also take a Lutheran strand by enrolling in additional topics (contact the Australian Lutheran College for information).

Professional Recognition: this double degree provides an academic qualification which will enable graduates to apply for teacher registration in South Australia, interstate and some overseas countries. Applicants need to check interstate registration requirements as they may change.

Bachelor of Education (Primary R-7)/ Bachelor of Arts

SATAC Code: 214971
Duration: 4 years F; equivalent P

This double degree is designed to prepare primary school teachers (Reception to Year 7). Graduates of this double degree will be awarded a Bachelor of Education (Primary R-7) and a Bachelor of Arts. Students will be provided with the background and skills necessary to enter the teaching profession with confidence and competence. Students will gain knowledge of selected Bachelor of Arts topics, curriculum studies and theories of education and undertake professional experience which brings together theory and practice in school settings.

Program Structure: students will complete a major and a minor in two Bachelor of Arts subject disciplines plus other Arts subjects. Students will also study education topics which include education studies, curriculum studies necessary for teaching in primary schools and professional practice placements.

Students may also take a Lutheran strand by enrolling in additional topics (contact the Australian Lutheran College for information).

A Languages strand can be completed for students who wish to teach languages in primary schools.

Professional Recognition: this double degree provides an academic qualification which will enable graduates to apply for teacher registration in South Australia, interstate and some overseas countries. Applicants need to check interstate registration requirements as they may change.
Graduates often work in teams with health professionals and medical specialists and an increasing number of private sector companies which are designing and manufacturing medical devices.

Flinders’ recognised Bachelor of Engineering (Biomedical) program has been extended to provide a fifth year leading to a Master of Engineering (Biomedical). Expectations are high and only students who complete the first three years with a credit average will be permitted to continue in this combined award. Students who do not meet a credit average will be permitted to transfer to the single Bachelor of Engineering (Biomedical) award.

Program Structure:

- **First Year:** Contains study in fundamental science and engineering topics including electronics, engineering materials, computer programming, mathematics and medical science.

- **Second Year:** Builds on this base with topics dealing with a variety of areas including biomechanics and biomedical instrumentation.

- **Third Year:** Builds on this again with further topics in engineering and medical science, including Biomaterials, Control Systems, Innovation in Medical Devices and additional electives.

- **Fourth Year:** Incorporates our nationally recognised industry placement program which provides students with 20 weeks of structured industry work experience with a local, national or international organisation. Students gain specialist knowledge in key areas, graduating with a proven on-the-job performance.

- **Final Year:** Provides room for further elective topics to be chosen and also includes a Masters thesis.

Professional Recognition:

This program meets the requirements for accreditation by Engineers Australia and is recognised internationally. Graduates will meet the academic requirements for attaining Chartered Professional Engineer status. Accreditation of any new engineering course occurs in the first year it is offered. Such accreditation is provisional until the course produces its first graduates.

Bachelor of Engineering (Biomedical)

Satac Code: 214772
Duration: 5-5.5 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies
Assumed Knowledge: Stage 2 Physics

Engineering (Biomedical)/Science - 5-5.5 years F; equivalent P.

In this combined degree, students are able to choose a major which is available in the current Bachelor of Science degree, there is also an option of a major in Biotechnology. A major in Engineering Science is not available. For further information about the Bachelor of Engineering (Biomedical) see 214771. For further information about the Bachelor of Science see 214331.

Engineering (Biomedical)/Medical Science - 5 years F; equivalent P.

In this combined degree students will study a combination of topics from both Medical Science and Engineering. For further information about the Bachelor of Engineering (Biomedical) see 214771. For further information about the Bachelor of Medical Science see 214421.

Engineering (Biomedical)/Business and Technology - 5 years F; equivalent P.

Applicants who want to boost their business, management, enterprise and communication skills and undertake a concentrated period of practical work experience, can consider combining with a Master of Business and Technology. For further information about the course structure, course content and how to apply see http://www.flinders.edu.au/courses/undergrad/bbust.

Bachelor of Engineering (Biomedical)/Master of Engineering (Biomedical)

Satac Code: 214881
Duration: 5 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies
Assumed Knowledge: Stage 2 Physics

Entry Requirements: Year 12 applicants must obtain an ATAR of 95 or higher (or equivalent).

Biomedical engineering involves using electronics and computer systems to improve health care and health services to enhance the quality of human life. Students will gain a solid education in engineering and medical science and develop skills to investigate, plan, design, manufacture and maintain systems and equipment used in all aspects of health care.

It covers a range of fields including medical devices, medical imaging, physiological signal processing, biomechanics and biomaterials. Biomedical engineering results in products such as diagnostic devices, biocompatible prostheses, medical devices, and imaging equipment such as MRIs and EEGs. It also assists in the development of tools for the training of medical professionals.

Bachelor of Engineering (Computer Systems)

Satac Code: 214791
Duration: 4 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies
Assumed Knowledge: Stage 2 Physics

Computer systems engineering is a blend of electronic engineering and computer science. Computer systems engineers build the computer based systems required to meet the future needs of a world in which technology is constantly evolving.
Specifically, computer systems engineers are interested in the integration of computer hardware and computer software. As a result, computer systems engineers need a good understanding of both software, network and operating system design and electronics. They focus on developing the specialised skills involved in designing and analysing hardware systems and algorithms for products such as PDAs, mobile phones, games machines through to aircraft flight control systems, unmanned vehicles, super computers and global telecommunication systems. In the Flinders Engineering (Computer Systems) degree there is a strong and balanced emphasis on the development of theoretical concepts, practical engineering skills and teamwork.

With computer systems integral to almost every aspect of modern life, from the home to the workplace and beyond, employment opportunities are vast. Graduates can secure employment in the private and public sectors and, with highly transferable skills, can move easily between various sectors and industries.

Program Structure: The first year contains study in fundamental science and engineering topics including digital and analog electronics, computer programming, mathematics and physics. The second year then builds on this base with topics dealing with a variety of areas including microprocessors, electronic circuits, computer networks, signal processing, and sensors and actuators.

The third year then provides further computer systems material and incorporates our nationally recognised industry placement program which provides students with 20 weeks of structured industry work experience with a local, national or international organisation. Students gain specialist knowledge in key areas, graduating with a proven on-the-job performance.

The final year provides further computer systems material and scope to take electives in computer science and engineering. It also includes a major research project or Honours thesis.

Professional Recognition: This course has full Professional Accreditation with the Australian Computer Society and Provisional Professional Accreditation with Engineers Australia. Accreditation of any new engineering course occurs in the first year it is offered. Such accreditation is provisional until the course produces its first graduates.

Bachelor of Engineering (Electronics)

SATAC Code: 214801
Duration: 4 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies
Assumed Knowledge: Stage 2 Physics

Electronics is the enabling technology for today’s society. It is embedded in most facets of life ranging from consumer goods to the sophisticated instrumentation used in electronic circuits, electronic devices, telecommunications and computer systems. Electronics engineering is founded in a field previously known as electrical engineering.

There are numerous employment opportunities in some of the fastest growing areas of the economy including, defence, medicine, telecommunications, construction, manufacturing and mining.

Program Structure: Students gain the skills and knowledge to plan, design and build the electronic circuitry that is integral to an extensive range of high technology applications.

The first year contains study in fundamental science and engineering topics including digital and analog electronics, computer programming, mathematics, professional skills for engineers and physics. The second year then builds on this base with topics dealing with a variety of areas including microprocessors, signal processing, electrical circuits and machines, electronic design and automation and sensors and actuators.

The third year then provides further electronics material and incorporates our nationally recognised industry placement program which provides students with 20 weeks of
inspiring achievement

inspiring achievement
Bachelor of Engineering (Mechanical) / Bachelor of Engineering (Biomedical)

SATAC Code: 224351
Duration: 5 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies
Assumed Knowledge: Stage 2 Physics

This course brings together both Mechanical and Biomedical Engineering. Mechanical Engineering is concerned with the design and construction of machinery. Biomedical engineering involves using electronics and computer systems to improve health care and health services to enhance the quality of human life. Students will gain a strong and broad foundation in the practical aspects of engineering particularly those relevant to the development of biomechanical systems. Career opportunities will be available in both the fields of Mechanical and Biomedical Engineering including in the health industry with the development of diagnostic devices, medical devices and imaging equipment. Mechanical Engineers gain positions in mining, defence, manufacturing, ship building, environmental, engineering consulting, building services, automotive, petrochemical, and other industries. Flinders' new Bachelor of Engineering (Mechanical) program has been extended to provide a fifth year leading to a Master of Engineering (Biomedical). Expectations are high and only students who complete the first three years with a credit average will be permitted to continue in this combined award. Students who do not meet a credit average will be permitted to transfer to the single Bachelor of Engineering (Mechanical) award.

Program Structure: The first year contains study in fundamental science and engineering topics including electronics, engineering materials, computer programming, mathematics and medical science. The second year then builds on this base with topics dealing with a variety of areas including dynamics and mechanical design, engineering design, biomechanics and biomedical instrumentation. The third year builds on this again with further topics in engineering and medical science, including mechanics and structures, fluid mechanics biomaterials, control systems, and additional electives. The final year includes studies in advanced mechanical design, and innovations in medical devices and provides room for further elective topics to be chosen and also includes a Masters thesis.

Professional Recognition: this program is designed to meet the requirements for accreditation by Engineers Australia and is recognised internationally. Graduates will meet the academic requirements for attaining Chartered Professional Engineer status. Accreditation of any new engineering course occurs in the first year it is offered. Such accreditation is provisional until the course produces its first graduates.
Bachelor of Engineering (Robotics)

SATAC Code: 214781
Duration: 4 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies
Assumed Knowledge: Stage 2 Physics

Robotics is concerned with the design, manufacturing and application of robots in a wide range of fields. The degree combines electronics, computer control, signal processing, and programming in the design, development, and operation of robots, and their integration with other systems in the work environment. Robots are capable of doing tasks with a level of precision, strength and endurance beyond human levels and they are an ideal substitute for workers in repetitive, hazardous and laborious jobs in manufacturing applications. As safety becomes more important to employers facing potentially hazardous situations in industry, robots and robotics technologies are in more demand than ever. Robots can fix satellites in space, perform underwater surveys, help in mining explorations, clean up nuclear waste, or operate in security situations. They can also be used in remote controlled surgery or in health care related areas.

Robotics engineers are in high demand in the automotive, electronic and defence sectors ranging from conceptual design work to the development and manufacturing of final products.

Program Structure: Flinders’ Robotics degree enables students to choose a course of study with either an intelligent robotics focus or a mechatronics focus.

The first year contains study in fundamental science and engineering topics including digital and analog electronics, computer programming, mathematics and physics. The second year then builds on this base with topics dealing with a variety of areas including the fundamentals of robotics, microprocessors, control systems, and sensors and actuators.

The third year then provides further robotics and electronics material and incorporates our nationally recognised industry placement program which provides students with 20 weeks of structured industry work experience with a local, national or international organisation. Students gain specialist knowledge in key areas, graduating with a proven on-the-job performance.

The final year provides further robotics material and scope to take electives in computer science and engineering. It also includes a major robotics research project or Honours thesis.

Professional Recognition: this course has Provisional Professional Accreditation with Engineers Australia. Accreditation of any new engineering course occurs in the first year it is offered. Such accreditation is provisional until the course produces it first graduates.

Bachelor of Engineering (Robotics) combined degrees

SATAC Code: 214782
Duration: 5-5.5 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies
Assumed Knowledge: Stage 2 Physics

Combined degrees are available with Science or Computer Science. Combined degree applicants must include the SATAC code and a stream code. Only one stream code can be entered. As the cutoff rank will be the same, regardless of the non-Robotics Engineering course nominated, applicants’ chances of selection will not be affected by which stream code they enter. In the Engineering (Robotics)/Science combined degree students are able to choose a major which is available in the current Bachelor of Science degree, there is also an option of a major in Biotechnology. A major in Engineering Science is not available. For information about the Bachelor of Engineering (Robotics) course see 214781. For further information about the Bachelor of Computer Science see 214821. For further information about the Bachelor of Science see 214331.

Engineering (Robotics)/Business and Technology - 5 years F; equivalent P. Applicants who want to boost their business, management, enterprise and communication skills and undertake a concentrated period of practical work experience, can consider combining with a Master of Business and Technology. For further information about the course structure, course content and how to apply see http://www.flinders.edu.au/courses/undergrad/bbust.

Bachelor of Engineering (Robotics)/Master of Engineering (Electronics)

SATAC Code: 224311
Duration: 5 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies
Assumed Knowledge: Stage 2 Physics
Entry Requirements: Year 12 applicants must obtain an ATAR of 95 or higher (or equivalent).

Robotics is concerned with the design, manufacturing and application of robots in a wide range of fields. The degree combines electronics, computer control, signal processing, and programming in the design, development, and operation of robots, and their integration with other systems in the work environment. Robots are capable of doing tasks with a level of precision, strength and endurance beyond human levels and they are an ideal substitute for workers in repetitive, hazardous and laborious jobs in manufacturing applications. As safety becomes more important to employers facing potentially hazardous situations in industry, robots and robotics technologies are in more demand than ever. Robots can fix satellites in space, perform underwater
surveys, help in mining explorations, clean up nuclear waste, or operate in security situations. They can also be used in remote controlled surgery or in health care related areas.

Robotics engineers are in high demand in the automotive, electronic and defence sectors ranging from conceptual design work to the development and manufacturing of final products.

Flinders’ robotics Bachelor of Engineering program has been extended to provide a fifth year leading to a Master of Engineering. Expectations are high and only students who complete the first three years with a credit average will be permitted to continue in this combined award. Students who do not meet a credit average will be permitted to transfer to the single Bachelor of Engineering (Robotics) award.

Program Structure: the first year contains study in fundamental science and engineering topics including digital and analog electronics, computer programming, mathematics and physics. The second year then builds on this base with topics dealing with a variety of areas including the fundamentals of robotics, microprocessors, signal and systems, and sensors and actuators. The third year builds on this with further topics in robotics and instrumentation and there is also room for selective topics.

The fourth year then provides further robotics and instrumentation material and incorporates our nationally recognised industry placement program which provides students with 20 weeks of structured industry work experience with a local, national or international organisation. Students gain specialist knowledge in key areas, graduating with a proven on-the-job performance.

The final year provides further robotics material and scope to take electives in computer science and engineering. It also includes a major robotics Masters thesis.

Professional Recognition: this program meets the requirements for accreditation by Engineers Australia and is recognised internationally. Graduates will meet the academic requirements for attaining Chartered Professional Engineer status. Accreditation of any new engineering course occurs in the first year it is offered. Such accreditation is provisional until the course produces it first graduates.

Bachelor of Engineering (Software)

SATAC Code: 214601
Duration: 4 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies

This course was the first engineering degree in South Australia specifically for students looking to be professional software engineers. It is one of a suite of courses at Flinders that, between them, cover the full spectrum of careers involved in the provision of IT infrastructure and services.

Software engineering is a dynamic emerging engineering discipline that is concerned with all aspects of software use, from design and development to maintenance and management. Combining the art and skill of engineering with the power of computer technology, software engineering develops programs and products that meet the demands of the modern economy.

The Software Engineering award provides for employment across a wide range of areas involving complex software systems and computer hardware. It focuses on the systematic development of large-scale software systems, particularly those involving networked services and hardware interfaces. Students learn how to analyse, design, construct and test complex software systems, including embedded, distributed and real-time systems. There is a strong emphasis on professional as well as practical skills and teamwork.

The advanced topics in this award as well as the final year project draw on the productive and growing research and development activity in such areas as embedded and intelligent systems, knowledge discovery and management, and enterprise IT.

Graduates will be equipped to work as software designers, software engineers, consultants and researchers in diverse areas such as mobile commerce and communications, simulators, medical and imaging equipment, internet computing and defence systems.

In second and third year students develop technical skills in programming, database systems, microcomputers and computer networks. Third year incorporates our nationally recognised industry placement program which provides students with 20 weeks of structured industry work experience with a local, national or international organisation.

In the final year students study advanced software systems and can select from a range of advanced technical electives. Upon completion of third year, students who meet the entry requirements may apply for admission to the Honours program offered in fourth year. Final year students complete either a design project, or a research and development oriented project if they are in the Honours stream.

Professional Recognition: this course has full Professional Accreditation with the Australian Computer Society and full Professional Accreditation with Engineers Australia.
Bachelor of Engineering (Software) combined degrees

SATAC Code: 214602
Duration: 5-5.5 years F; equivalent P
Prerequisites: Mathematical Methods or Mathematical Studies

Combined degrees are available with Science or Computer Science. Combined degree applicants must include the SATAC code and a stream code. Only one stream code can be entered. As the cutoff rank will be the same, regardless of the non-Software Engineering course nominated, applicants' chances of selection will not be affected by which stream code they enter. In the Engineering (Software)/Science combined degree, students are able to choose a major which is available in the current Bachelor of Science degree, there is also an option of a major in Biotechnology. A major in Engineering Science is not available. For information about the Bachelor of Engineering (Software) course see 214601. For further information about the Bachelor of Science see 214331. For further information about the Bachelor of Computer Science see 214821.

Bachelor of Engineering Science

SATAC Code: 214811
Duration: 3 years F; equivalent P
Assumed Knowledge: Stage 2 Mathematical Methods or Mathematical Studies and Stage 2 Physics

This course equips graduates with the knowledge to become engineering technologists. It focuses on electronics, biomedical, mechanical or software engineering. With no formal prerequisites, students performing well in this award are able to transfer to the 4 year Bachelor of Engineering awards.

Program Structure: the course has significant commonality with the Bachelor of Engineering awards meaning that students who are performing well and wish to transfer to the Bachelor of Engineering awards can do so with minimal loss of time.

The first year contains study in fundamental science and engineering topics including digital electronics, computer programming and mathematics. The second year then builds on this base with topics dealing with a variety of areas that depend on the sequence option students choose. The final year provides further studies and provides scope to take electives in computer science and engineering.

Professional Recognition: this course has Provisional Technical Accreditation with Engineers Australia. Accreditation of any new engineering course occurs in the first year it is offered. Such accreditation is provisional until the course produces its first graduates.

Bachelor of Environmental Management

SATAC Code: 214151
Duration: 3 years F; equivalent P

Flinders University offers a suite of courses that provide specialised training for a range of environmental career options - from field or laboratory work to policy and administration.

Management of the environment ultimately requires management of people and their behaviour. The aim of the degree is to train graduates for jobs that involve working with people and businesses to change environmental behaviour, and developing environmental policies and strategies to achieve this end.

This course will appeal to students who are interested in the environment and want to protect it from degradation, enjoy working outdoors, and like working with people. Students will gain knowledge of biophysical processes which determine the limits to the sustainable development of regional or local environments. Students will understand the technological and human causes of our impact on these environments and how these influence our response to environmental risk, including climate change and water scarcity.

Graduates are employed in all aspects of the green economy including local, state and national government agencies, catchment management boards, natural resource management groups, non-government organisations, educational institutions, consulting firms, and private businesses.

Program Structure: the degree has a strong focus on the professional skills utilised by environmental managers. In first year, students will undertake a broad range of studies along with specialist topics on water resources, cities, business, environmental and biological sciences, and professional skills. Second and third year topics include, environmental systems, GIS, environmental impact assessment, sustainable resources management and environmental management. There is also the opportunity to choose elective topics that suit your area of interest, selected from areas such as biology, earth sciences, development studies, archaeology and urban and regional studies. The elective structure also allows for recognition of prior learning and credit transfer. Students can undertake study overseas as part of international exchange program (see http://www.flinders.edu.au/international-students/study-abroad-exchange/study-overseas.cfm).
Bachelor of Government and Public Management

SATAC Code: 214671
Duration: 3 years F; equivalent P

Public sector employment is becoming largely the province of university graduates as governments move to smarter ways of operating. This course, designed in consultation with potential employers, aims to produce graduates equipped with the knowledge and skills to work in a wide range of jobs in the governmental sector and also in the non-profit and business sectors where they interact with government in the increasingly important policy, contractual and regulatory areas. Indicative job titles include graduate officers, policy officers, policy analysts, program administrators, research and project officers, political advisers, executive and parliamentary assistants, government-business liaison officers, public affairs officers, regulatory managers and applied social scientists.

Program Structure: the course comprises a three-year stream in Management and Public Policy, along with generous opportunities for elective studies in a wide range of other social science, humanities and foreign-language subjects. The Management stream incorporates first year introductory topics of Accounting for Managers and Economics for Business. Subjects in later years include Sustainable Resource Management, Marketing Principles and Leadership in Business and Society. The Public Policy stream begins in the first year with Australian Politics and Sustainable Resource Management, and an Introduction to Australian Public Policy. This is followed in later years by studies in Government, Business and Society, and Advanced Perspectives on Public Policy, including a range of possible applications that may include the environment, social welfare, urban policy, Aboriginal affairs, family policy and studies of government in foreign countries. There may be opportunities for workplace internships in the parliamentary and public sectors in Adelaide, Canberra or overseas – for example the Washington DC Internship Program and the South Australia Parliamentary and Public Sector Internship. The degree highly encourages students to take advantage of international exchange possibilities in a range of countries such as Argentina, the USA, the UK, the Netherlands, China, Malaysia and Indonesia.

Bachelor of Government and Public Management (TAFE/VET pathway)

SATAC Code: 214672
Duration: 1.5 years F/FX; equivalent P/PX
Entry Requirements: applicants must have completed a Diploma or Advanced Diploma in Management, Business, Government or a related field.

This TAFE/VET pathway program is especially designed for people who have graduated with a TAFE/VET Diploma or Advanced Diploma in Management, Business, Government or related areas. Applicants who have completed such an award will receive credit amounting to half of the course requirements of the Bachelor of Government and Public Management (1.5 years of credit).

Topics are available externally (through on-line delivery) or through face-to-face delivery.

Public sector employment is becoming largely the province of university graduates as governments move to smarter ways of operating. This course, designed in consultation with potential employers, aims to produce graduates equipped with the knowledge and skills to work in a wide range of jobs in the governmental sector and also in the non-profit and business sectors where they interact with government in the increasingly important policy, contractual and regulatory areas. Indicative job titles include graduate officers, policy officers, policy analysts, program administrators, research and project officers, political advisers, executive and parliamentary assistants, government-business liaison officers, public affairs officers, regulatory managers and applied social scientists.

Program Structure: this accelerated pathway course, where students receive 1.5 years of credit, and therefore have to undertake a further 1.5 years of full-time study or part-time equivalent, requires students to complete the following topics: Australian Politics: A Comparative Study; Government, Business and Society; Accounting for Managers; Economic Institutions and Policy.

This is followed in later years by studies in specific public policy areas which include environmental politics, social welfare, urban policy, Aboriginal affairs, family policy and studies of foreign governments.

Bachelor of Information Technology

SATAC Code: 214201
Duration: 3 years F; equivalent P

Information Technology (IT) is integral to modern life - it drives innovation and assists us to solve problems. It has a significant impact upon the creative industries and in the development of new products and services. It covers everything from designing software and creating games to managing information, improving our security and doing business through the web.

This course is comprehensive in nature and has an emphasis on the professional skills required to meet the information needs of any modern enterprise. IT at Flinders assumes no particular background or prior experience and no previous computing or mathematical studies. Furthermore, the degree provides scope for students to pursue their own areas of interest. The IT profession offers a broad and diverse range of job opportunities spanning the highly technical through to very people-oriented careers.
On completion of this course students will gain marketable and industrially relevant skills and knowledge in areas such as internet programming, web-based systems development, software engineering, database systems, computer networks, professional enterprise including self-management, communication and interpersonal skills.

Program Structure: In addition to core computer science and IT topics, this course provides for study in areas such as enterprise management and project management for professional skills development. Instruction in internet-based areas of application is a feature of the program. In the later years students can begin to specialise in particular areas of interest and undertake practical work and project work relevant to industry. A fourth year (Honours) program is available. Honours opens up further exciting opportunities with respect to employment, in academia, in research and development and in leading-edge industries.

Professional Recognition: this course has Full Professional Accreditation with the Australian Computer Society.

Bachelor of International Studies

SATAC Code: 214221
Duration: 3 years F; equivalent P

International Studies is more than just world affairs or even the modern phenomenon of globalisation. It is the contemporary and historical understanding of global societies, cultures, languages and systems of government and of the complex relationships between them that shape the world we live in.

Graduates find employment opportunities in international, government and non-government organisations, including diplomacy, foreign affairs, defence, intelligence, foreign aid, humanitarian services, politics, education, language services and journalism. As well as specific skills, graduates will develop enhanced generic skills relevant to many jobs in management, administration, consulting firms, the media, the public service, commerce and industry. These include skills in research, communication, policy and political analysis and information management.

Program Structure: the first year of the course includes three compulsory topics (International Relations: An Introduction, Australia and the World, and Australian Politics: A Comparative Study), one other chosen from core level one topics (America and the World: The United States in a Global Context; Discovering Asia; Modern Asia: Economy, Society and Politics; The Political Economy of International Development; and Turning Points in World History) plus another from first level International Studies offerings.

Students may also choose topics on a range of subjects, for example, African Studies, America as an Empire, The Middle East, Energy and Security, Human Rights, International Financial Crises, Terrorism and International Security.

Students must complete two major sequences in the International Studies offerings, at least one of which must be chosen from International Relations, Development Studies, History, Politics, American Studies, or Asian Studies.

Language Studies may constitute the second major sequence (recommended), chosen from Indonesian, Spanish, French, Italian, or Modern Greek, or any other language (taught at another university).

Bachelor of International Tourism

SATAC Code: 214841
Duration: 3 years F; equivalent P

The Bachelor of International Tourism aims to develop the analytical and practical skills needed by students in tourism worldwide, to respond to the growing market demand for high quality, sustainable tourism development and management.

The degree examines the issues, trends and approaches in the global tourism industry. Its objective is to promote a critical and theoretical understanding of tourism as a global phenomenon and to apply that understanding to international, national, regional and local circumstances by examining diverse industry practices in a range of contexts.

The Bachelor of International Tourism is an industry-focused degree which trains graduates for employment in a wide range of positions in what is a very diverse industry in both Australia and overseas.

Program Structure: knowledge and skills orientated tourism business practices in the functioning of the tourism industry globally form a core component of the degree. It combines academic analysis of trends in worldwide tourism and its impact with practical contact with selected local, regional, national and international aspects of tourism. It covers issues in tourism development and planning that allow for the retention of the authentic character of a place and investigates the approaches required to best respond to the opportunities and challenges presented in global tourism. Policy, strategic development and global best practice are also covered.

The degree has strong links to the tourism industry and this is reflected in the course content as students undertake a number of core topics which are industry focused, including an industry practicum and industry-linked research. Students can also choose from three areas of specialisation: Cultural Tourism, Festival and Event Design and Management, or Nature Based Tourism.
Bachelor of International Tourism
combined degrees

SATAC Code: 214842
Duration: 4 years F; equivalent P

A Bachelor of International Tourism/Bachelor of Languages combined degree is available. The combined degree will provide students with the opportunity to combine the study of the theoretical and practical elements of the tourism industry with the acquisition of language and cultural skills. Students undertaking the combined degree will either acquire skills in a second area of languages other than English (LOTE), or they will study a significant number of culture topics.

To apply for the Bachelor of International Tourism/Bachelor of Languages combined degree, applicants must use SATAC code 214842 and select the Languages stream code. Applicants are also encouraged to apply for the single degree Bachelor of International Tourism (214841).

Bachelor of Justice and Society

SATAC Code: 214241
Duration: 3 years F; equivalent P

This degree is for future decision makers and leaders. It is designed to give students a thorough grounding in research, ethics and justice. This is the degree for you, if you are interested in how the machinery of government, business and the law can be used to provide fair outcomes in society.

The aim is to provide students with a high level of knowledge and skills to be able to critically analyse and evaluate the ways that government, business and the justice system impact on people's lives. Students will develop high level communication, presentation and teamwork skills that will prepare students for leadership roles in the future.

Graduates will have a good understanding of how society and the law operates, and the skills to develop reasoned and well-defended views about what course of action would be fair and just in a world of uncertainty and compromise. The degree is not a pathway to professional legal practice. Instead graduates will be able to seek employment in the public and private sector and not-for-profit organisations concerned with development and evaluation of policies and practice in a range of areas linked to justice and equity.

Program Structure: students will study a major sequence in Legal Studies as well as core topics in Justice Policy. Students will also complete one major sequence chosen from: Archaeology, Criminal Justice, International Relations, Philosophy, Politics, Public Policy, Sociology or Women's Studies. Areas of study have been carefully selected to ensure that students will develop a sound understanding of the workings of the Australian legal system and the way it impacts on society in the areas of family, culture, gender, the world of work and technology.

At first year level students will study a combination of Legal Studies and Justice Policy topics plus topics from their chosen major and an elective topic. In second and third years students will study a range of upper level Legal Studies topics including a research topic and the Seminar in Justice and Society. Additionally students will complete their chosen major sequence. Students will also have the opportunity to complete a work integrated learning topic which will help students to refine and strengthen a diverse range of skills required in the constantly changing employment market.

Bachelor of Laws and Legal Practice combined degrees

SATAC Code: 214442
Duration: 5-6 years F; equivalent P
Prerequisites: applicants for the Law/Science (Forensic and Analytical Chemistry) combined degree must meet the prerequisite requirements for admission to Science (Forensic and Analytical Chemistry), see 224161. Applicants for the Law/Science (Nanotechnology) combined degree must meet the prerequisite requirement for admission to Science (Nanotechnology), see 224181.

This course provides all the educational and training requirements necessary for admission to legal practice. It provides the skills and knowledge needed to embark upon a career as a practising lawyer and is also highly valued in a wide range of occupations.

Program Structure: the course contains many compulsory topics covering the major areas of law. Practical skills are developed from the beginning of the course and are linked to compulsory topics. Those students who do not wish to be admitted to legal practice may exit six months earlier with a Bachelor of Laws (LLB). The combined degree option allows students to develop specialist interests in areas of social sciences, humanities, science, business and commerce.

Professional Recognition: successful completion of the LLB/LP satisfies the academic and professional requirements underpinning eligibility to be admitted as a barrister and solicitor in South Australia; successful completion of the LLB satisfies the academic requirements underpinning eligibility to be admitted as a barrister and solicitor in South Australia; admission to practice in other states and territories in Australia would normally be possible but is formally subject to the requirements in place in those jurisdictions.

Bachelor of Media (Creative Arts)

SATAC Code: 214851
Duration: 3 years F; equivalent P

The Bachelor of Media provides an opportunity for students to combine an intensive study of media (especially digital media) with study of the creative arts. It allows students to develop their knowledge and skills in a key area of
developing technology while simultaneously studying a major discipline chosen from those available in the Bachelor of Arts. It provides a sound basis for employment in areas where knowledge of traditional Arts disciplines needs to be combined with a knowledge of media and an ability to handle the media tools which are so central to the functioning of today's society.

Program Structure: the primary focus of the degree is on digital media. Students will learn about the history and development of media, their role within society, and the relationships between a range of different media, including screen-based, print and mobile, to name just a few. Students will study various means of media production including writing and designing for the web, digital publishing, digital image creation and manipulation, and animation. Students will benefit from combining theory with hands on practical exercises.

In one half of the course students focus on the study and production of media. In the other half of the course students have the choice of studying either one major sequence and electives, or two minor sequences and electives. Major and minor sequences are chosen from the following disciplines: English, Drama, Screen and Media, and Creative Writing.

Students will be engaged in media production of increasing complexity from the first year of the degree leading to either an industry placement or an industry-related project in third year. Students can choose to participate in the highly acclaimed MegaSA program, or to undertake a team project with Computer Science and Creative Arts students if they wish to. All students will develop skills in the handling of programs for graphic design, digital publishing, and multimedia production.

Bachelor of Media (Public Affairs)

SATAC Code: 214861
Duration: 3 years F; equivalent P

The Bachelor of Media degree provides an opportunity for students to combine an intensive study of media (especially digital media) with the study of public affairs. It allows students to develop their knowledge and skills in a key area of developing technology while simultaneously studying a major discipline chosen from those available in the Bachelor of Arts. It provides a sound basis for employment in areas where knowledge of traditional social science disciplines needs to be combined with a knowledge of media and an ability to handle the media tools which are so central to the functioning of today's society.

Program Structure: the primary focus of the degree is on digital media. Students will learn about the history and development of media, their role within society, and the relationships between a range of different media, including screen-based, print and mobile, to name just a few. Students will study various means of media production including writing and designing for the web, digital publishing, digital image creation and manipulation, and animation. Students will benefit from combining theory with hands on practical exercises.

In one half of the course students focus on the study and production of media. In the other half of the course students have the choice of studying either one major sequence and electives, or two minor sequences and electives. Majors and minors are chosen from the following disciplines: American Studies, Criminal Justice, Development Studies, Environmental Studies, History, Indigenous Studies, International Relations, Legal Studies, Politics, Public Policy and Sociology.

Students will be engaged in media production of increasing complexity from the first year of the degree leading to either an industry placement or an industry-related project in third year. Students can choose to participate in the highly acclaimed MegaSA program, or to undertake a team project with Computer Science and Creative Arts students if they wish to. All students will develop skills in the handling of programs for graphic design, digital publishing, and multimedia production.

Bachelor of Science

SATAC Code: 214331
Duration: 3 years F; equivalent P

The Bachelor of Science degree provides an extensive range of options for students who want to discover where science can take them - and where they can take science. There is great flexibility in the program, allowing students to follow their interests without being confined by traditional discipline boundaries.

The degree is designed to provide the strongest possible foundation for a science-based career. Our graduates are equipped not just to find their first job in their chosen field, but to explore new options in later years as science - and their own interests - change and develop. Students do not need a science background to enrol in this degree. There are no prerequisites and introductory studies are offered where necessary.

Program Structure: students choose a range of general and introductory subjects in first year. In first year students also have some options: if students already know what areas of study they wish to pursue, they can select the relevant first year subjects that will lead to these areas; if students haven’t yet made up their mind they can select from a range of subjects that will allow them to sample a number of science areas.

In second and third years, students are able to specialise in one or more areas of science, and can combine traditional disciplines with new areas of Science. In second and third years students can choose to complete: a specialisation and electives; an extended major and electives; two major sequences; or one major, one minor sequence and science or non-science electives.
Specialisations can be taken in: Animal Behaviour; Aquaculture; Biodiversity and Conservation; Environmental Science; Forensic and Analytical Chemistry; Marine Biology; or Nanotechnology (see separate SATAC entries for these specialisations).

Extended major sequences can be taken in: Chemistry; Computer Science; Information Systems, Mathematics; Molecular Biosciences and Microbiology; or Physics.

Major sequences can be taken in: Chemistry; Computer Science; Ecology, Evolution and Organismal Biology; Engineering Science, Environmental Hydrology and Water Resources; Information Systems; Mathematics; Molecular Biosciences; Ocean and Climate Sciences; or Physics.

Minor sequences can be taken in: Biological Science; Botany; Chemistry; Computer Science; Engineering Science; Environmental Hydrology and Water Resources; Information Systems; Mathematics; Microbiology; Physics; or Zoology.

Elective topics from non-science areas (eg Archaeology, Legal Studies, Philosophy, Languages, Geography, Environmental Studies, Psychology) may also be included.

Professional Recognition: the Bachelor of Science (Computing Science extended major/major) and Bachelor of Science (Information Systems extended major/major) have full Professional Accreditation with the Australian Computer Society. The Bachelor of Science (Computing Science minor) and Bachelor of Science (Information Systems minor) have Associate Accreditation with the Australian Computer Society.

Bachelor of Science (Animal Behaviour)

SATAC Code: 224111
Duration: 3 years F; equivalent P
Entry Requirements: it is expected that year 12 applicants will need to achieve an ATAR of 70 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Animal Behaviour is available as a specialisation within Flinders’ Bachelor of Science and Bachelor of Science (Honours) degrees.

Animal behaviour is the study of whole organism interactions on planet earth; it is the study of how individuals respond to and affect their social and ecological environment.

Animal behaviour provides a science-based perspective on the role of communication, reproduction, and learning for survival in changing environments. Animal behaviour includes a study of social organisation, individual strategy and decision making, and interactions between species like predator-prey and pollination. Animal welfare is a key concern for captive animals, agriculture, and research, and is a pillar for the values of society. Understanding animal communication in noisy urban environments - such as dolphin communication in busy ports - will help to inform the use of marine environments.

The study of animal behaviour provides a general framework for understanding behaviour relevant to society. The breadth of applications of knowledge about animal behaviour therefore spans conservation and research to urban planning, education, law, sociology, and medicine.

Graduates from the Flinders Animal Behaviour specialisation will have obtained knowledge and skills that are transferable to various workplaces including in private, government and university organisations. Examples of jobs a graduate can apply for include: national parks ranger, wildlife carer, tour guide, conservation biologist, research scientist in a range of disciplines (after Honours and PhD).

Program Structure: in first year students obtain the required foundations in biology and chemistry and an introduction to animal behaviour. Students who do not have a background in chemistry are able to choose introductory chemistry topics, making this specialisation available to those with no scientific background.

In second and third year students pursue more detailed knowledge in animal behaviour. Examples of areas of study include animal diversity; foundations of animal behaviour; genetics, evolution and biodiversity; disease and immunology; integrative physiology of animals and plants; and conservation biology and restoration ecology. Students will have the opportunities to apply their knowledge in a project setting by developing a public conservation plan or environmental impact study. Other opportunities exist for students to conduct a research project in animal behaviour. Both these opportunities give students an understanding of the task involved with a career in this field.

Bachelor of Science (Aquaculture and Marine Biology)

SATAC Code: 224281
Duration: 3 years F; equivalent P
Entry Requirements: it is expected that Year 12 applicants will need to achieve an ATAR of 70 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Aquaculture/Marine Biology is available as a double specialisation in the Bachelor of Science and Bachelor of Science (Honours).

Marine biology is the study of the living world in the sea, from the simple molecules that support life, to mammals and to entire marine ecosystems. Aquaculture is applied science at the most practical level - and is more than just fish farming. It includes research and production of animals such as oysters, crayfish, and even aquatic plants such as seaweed.

Program Structure: this double specialisation is a compact and efficient program which combines the core topics in Marine Biology and Aquaculture. Students will gain a broad based foundation in science together with practical and
theoretical skills. An understanding of marine organisms, their relationships with the marine environment and responses to change will be examined. Studies will be in areas such as animal diversity, genetics, conservation, fisheries, ecology, coasts an oceans, aquaculture nutrition and water quality, aquaculture systems and technology, business planning, and aquaculture reproduction, health and quality. Students complete a Biology research project in a research laboratory or field placement and have the opportunity to apply knowledge they have gained in the course. Another practically orientated component in the degree is developing a public conservation plan or environmental impact study which puts theoretical knowledge into a societal setting.

In first year students take introductory topics in aquaculture and shellfish consumed globally and this growth trend is expected to continue in the foreseeable future. Consumers demand more seafood than wild stocks can produce; aquaculture provides pathway in which we can produce these numbers in a sustainable way that meets demand. Aquaculture is not just a matter of growing fish and selling them, it is a complex industry requiring scientific and business skills.

This is the only university course of its kind in South Australia and has the backing of the fishing industry through the South Australian Fishing Industry Council.

Program Structure: the focus in this degree is on combining a strong background in the natural sciences with an understanding of health and safety issues, practical and management issues, and business and communication skills. Much of the practical work is carried out in purpose-built aquarium systems at Flinders and workplace education is provided in collaboration with aquaculture operators in various locations in South Australia, interstate and overseas.

In first year students take introductory topics in aquaculture theory and practice and biology, while gaining grounding in supporting areas such as chemistry. In second year, more specialised areas are introduced, including genetics, evolution, biodiversity, ecology, animal diversity, aquaculture nutrition and water quality, aquaculture systems and technology, disease and immunology experimental design and statistics.

In third year students expand their knowledge of specific fields of aquaculture, including aquaculture reproduction, marine and freshwater biology, integrative physiology of animals and plants, plant and algal diversity, aquaculture health and product quality and business planning for new ventures. In second and third year students can also select elective topics of interest from other areas of the University.

Bachelor of Science (Aquaculture)

SATAC Code: 224121
Duration: 3 years F; equivalent P
Entry Requirements: It is expected that Year 12 applicants will need to achieve an ATAR of 70 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Aquaculture is available as a specialisation within Flinders’ Bachelor of Science and Bachelor of Science (Honours) degrees.

Aquaculture is applied science at the most practical level and is more than just fish farming. Aquaculture includes the production of molluscs (including oysters, abalone, mussels and scallops) and crustaceans (shrimps, prawns, freshwater and marine crayfish), and even aquatic plants such as seaweed. The common link is that all are in great demand.

Aquaculture already provides around one-third of all the fish and shellfish consumed globally and this growth trend is expected to continue in the foreseeable future. Consumers demand more seafood than wild stocks can produce; aquaculture provides pathway in which we can produce these numbers in a sustainable way that meets demand. Aquaculture is not just a matter of growing fish and selling them, it is a complex industry requiring scientific and business skills.

This is the only university course of its kind in South Australia and has the backing of the fishing industry through the South Australian Fishing Industry Council.

Program Structure: the focus in this degree is on combining a strong background in the natural sciences with an understanding of health and safety issues, practical and management issues, and business and communication skills. Much of the practical work is carried out in purpose-built aquarium systems at Flinders and workplace education is provided in collaboration with aquaculture operators in various locations in South Australia, interstate and overseas.

In first year students take introductory topics in aquaculture theory and practice and biology, while gaining grounding in supporting areas such as chemistry. In second year, more specialised areas are introduced, including genetics, evolution, biodiversity, ecology, animal diversity, aquaculture nutrition and water quality, aquaculture systems and technology, disease and immunology experimental design and statistics.

In third year students expand their knowledge of specific fields of aquaculture, including aquaculture reproduction, marine and freshwater biology, integrative physiology of animals and plants, plant and algal diversity, aquaculture health and product quality and business planning for new ventures. In second and third year students can also select elective topics of interest from other areas of the University.

Bachelor of Science (Biodiversity and Conservation)

SATAC Code: 224131
Duration: 3 years F; equivalent P
Entry Requirements: It is expected that Year 12 applicants will need to achieve an ATAR of 70 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Biodiversity and Conservation is available as a specialisation within Flinders’ Bachelor of Science and Bachelor of Science (Honours) degrees.

Biodiversity essentially is the study of all living organisms in the environment, the range of different species that are found in each place and the methods that we can use to manage ecosystems to conserve as many of those species as possible. It is a broad field and so, by design, this course offers the opportunity to combine skills in conservation biology with complementary skills in areas such as computing, chemistry and/or geographic analysis. The Bachelor of Science (Biodiversity and Conservation) examines the increasing and diverse impact humans are having on the natural environment worldwide, addressing such key issues as loss of species, habitat destruction or fragmentation, invasion by introduced animal or plant species and the design of nature reserves and conservation programs. Students may tailor their study programs by choosing from a range of selective topics to focus on areas such as the biodiversity and conservation of whole organisms, conservation genetics or landscape ecology.

Program Structure: this course is built around knowledge of the core sciences that are crucial to understanding the world’s amazing diversity but students’ specific interests will also govern the exact program. Throughout the course there is a strong focus on fieldwork and practical training, projects involving team-work and the development of communication and professional skills.

In first year students will take topics in areas such as biodiversity and conservation, evolution and the molecular basis of life and first level chemistry and have the opportunity to choose elective topics. In second year students will take
Entry Requirements:
Bachelor of Science (Biotechnology)

SATAC Code: 224141
Duration: 3 years F; equivalent P
Entry Requirements: It is expected that Year 12 applicants will need to achieve an ATAR of 70 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Biotechnology is available as a specialisation within Flinders’ Bachelor of Science and Bachelor of Science (Honours) degrees. Biotechnology is changing the world around us and is considered a growth technology of the 21st century, with job opportunities to match. It is an exciting field of science, combining aspects of medicine and biology. Biotechnology is the use of living organisms - often minute, micro-organisms - to create products or perform tasks for us. Those organisms may be as simple as yeast or as complex as cells, genes, bacteria or DNA. Rapid advances in genetic engineering, protein engineering, cell culture and molecular biology have given us an unprecedented ability to control life processes, leading to new discoveries and innovative solutions to many of the problems facing our modern society. The possible applications are almost endless - from the diagnosis and treatment of human diseases and improved production of therapeutic agents, to the development of better crop plant species, transgenic organisms for new drugs, biosensors for environmental pollutants or improved waste treatment processes. This course prepares students to work as professionals in one of the most exciting areas of modern science by combining theory and specialised practical scientific training with the study of related business, legal, ethical and social issues.

Program Structure: as well as the fundamental science, there is a strong business component, with emphasis on enterprise management, intellectual property protection, marketing, and the legal, ethical and social aspects of biotechnology, all of which play an important role in the commercialisation of biotechnology. In first year students will take an introductory topic in Biotechnology which will expose them to the diverse opportunities available in the field. First year students also gain a foundation in biology and chemistry, and undertake elective topics. Second year involves fundamental biology topics (molecular biology, biochemistry, microbiology, genetics and experimental design) and introduces students to the process of transferring bioscience discoveries from the laboratory to the wider community and making a difference to society. The legal, ethical and social interaction between the biosciences and society is also explored. Third year focuses on deepening and applying scientific knowledge towards solving problems using Biotechnology. Students remain interdisciplinary throughout the degree but can choose from Medical, Environmental, Plant Science to Food, and Industrial & Pharmaceutical Biotechnology topics in their final year. All students in their third year will undergo a laboratory research placement.

Bachelor of Science (Environmental Science)

SATAC Code: 224151
Duration: 3 years F; equivalent P
Assumed Knowledge: Stage 2 Chemistry, Mathematical Studies, Physics
Entry Requirements: it is expected that year 12 applicants will need to achieve an ATAR of 70 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Environmental Science is available as a specialisation within Flinders’ Bachelor of Science and Bachelor of Science (Honours) degrees.

To protect our environment we need to fully understand how it works, what impact we can have and how we should set our priorities. Environmental Science focuses on the underlying science that underpins environmental monitoring, assessment and improvement. It is distinct from, but complementary to, areas such as environmental management and environmental health and opens up a variety of career opportunities.

This course appeals to students who thrive on scientific discovery, enjoy working outdoors, and want to make a difference. Teamwork and communication skills are emphasised in professionally focussed topics designed to promote a smooth transition between university study and professional careers in environmental science.

Program Structure: this degree offers three areas of specialisation. Students can choose to concentrate their studies within one of the following streams:

- Coasts and Catchments, which trains scientists in coastal and catchment hydrology and ecology.
- Environmental Forensics, which will give students the skills to identify and trace the source of environmental contamination.
- Global Water Resources, which examines the interactions, relationships and cycles between water, ecosystems and the environment.

Whichever stream students choose, students will take an interdisciplinary program that combines biology, earth science and chemistry with state-of-the-art technologies such as computer simulation and prediction and
forensic identification. The underlying aim is to apply scientific techniques and solutions to issues of ecosystem sustainability.

First year areas of study will include: biology, chemistry, earth and environmental sciences and marine science.

In second and third years students will investigate specific problems and work in teams in hands-on projects in the field and laboratory. Students will also focus on their chosen stream. Field trips are a feature of all three streams.

Bachelor of Science (Forensic and Analytical Chemistry)

SATAC Code: 224161
Duration: 3 years F; equivalent P
Prerequisites: Chemistry
Entry Requirements: It is expected that Year 12 applicants will need to achieve an ATAR of 70 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Forensic and Analytical Chemistry is available as a specialisation within Flinders’ Bachelor of Science and Bachelor of Science (Honours) degrees.

Analytical chemistry involves analysing and identifying elements and compounds. Forensic chemistry is the application of analytical chemistry to matters of a legal nature, whether related to crime, environmental or safety laws, or simply the rules of society. Forensic and Analytical Chemistry, therefore, combines the practice of analytical chemistry with the application to forensic investigation. Forensic and Analytical Chemistry will appeal to students who are inquisitive, like problem solving and have a passion for science and laboratory based work.

The Bachelor of Science (Forensic and Analytical Chemistry) is a unique degree in South Australia that has been set up at Flinders University in consultation with Forensic Science South Australia and the South Australian Police. It was also designed in consultation with analytical and forensic chemists working in the public and private sectors.

Students have the opportunity to gain employment in areas such as crime scene investigation, food, wine and water quality, testing for use and abuse of drugs and working in analytical laboratories.

Program Structure: this degree combines studies in all aspects of chemistry with related sciences such as biology and earth sciences, the necessary mathematical and computer skills required to process and analyse data, and a thorough grounding in industrial practice and the relevant areas of our legal system. There is also a strong focus on developing students’ oral and written communication skills, interpersonal skills and ability to work independently or as part of a team which are highly regarded by employers.

In first year students gain a sound knowledge in chemistry, biology, forensic methods and statistics. Students also have a choice of two electives. Second year includes a range of chemistry topics as well as molecular biology and a specific topic on the chemical analysis of physical evidence, along with a choice of two electives. Third year places specific emphasis on forensic methods, including those used for DNA and drugs and toxicology. In addition students will undertake further studies in analytical chemistry. Students are given the opportunity to apply what they have learnt in advanced laboratories.

Professional Recognition: the Bachelor of Science (Forensic and Analytical Chemistry) is designed in accordance with accreditation requirements of the Royal Australian Chemical Institute (RACI) which, in some labs, is required to practice as an analytical chemist. Students can apply for a student membership of RACI which provides them with regular copies of their chemistry publication Chem in Oz, website resources, subsidised transport and registration for attending conferences and a range of activities of the local branch of the RACI.

Bachelor of Science (Honours)

SATAC Code: 224191
Duration: 4 years F; equivalent P
Entry Requirements: it is expected that Year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

The Bachelor of Science (Honours) is similar to the Bachelor of Science degree in that it provides an extensive range of options for students in traditional and non-traditional areas of science. There is also great flexibility in the program, allowing students to follow their interests and sample topics early in their studies.

Students admitted to a Bachelor of Science (Honours) can follow the same study plan as those admitted to the Bachelor of Science but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them. The skills obtained during Honours will be of great benefit whatever students choose to do after completion, whether it is progressing to a higher degree, further study in another area or moving into employment.

Program Structure: students choose a range of general and introductory subjects in first year. In first year students also have some options: if students already know what areas of study they wish to pursue, they can select the relevant first year subjects that will lead to these areas; if students haven’t yet made up their mind they can select from a range of subjects that will allow them to sample a number of science areas.

inspiring achievement
In second and third years, students are able to specialise in one or more areas of science, and can combine traditional disciplines with new areas of science. In second and third years students can choose to complete: a specialisation and electives; an extended major and electives; two major sequences; or one major, one minor sequence and Science or non-Science electives. Specialisations can be taken in: Animal Behaviour; Aquaculture; Biodiversity and Conservation; Environmental Science; Forensic and Analytical Chemistry; Marine Biology; or Nanotechnology (see separate SATAC entries for these specialisations).

Fourth year is an Honours year where students undertake a research project and further coursework. During this year students are able to work closely with academic and research staff.

Key discipline areas in the Bachelor of Science (Honours) include: Chemistry; Computer Science; Ecology; Evolution and Organismal Biology; Environmental Hydrology and Water Resources; Engineering Science; Information Systems; Mathematics; Molecular Biosciences and Microbiology; Molecular Biosciences; Ocean and Climate Sciences; Physics.

Bachelor of Science (Honours) (Animal Behaviour)

SATAC Code: 224201
Duration: 4 years F; equivalent P
Entry Requirements: It is expected that year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Animal Behaviour is available as a specialisation within Flinders’ Bachelor of Science and Bachelor of Science (Honours) degrees.

Animal behaviour is the study of how individuals respond to and affect their social and ecological environment.

Animal behaviour provides a science-based perspective on the role of communication, reproduction, and learning for survival in changing environments. Animal behaviour includes a study of social organisation, individual strategy and decision making, and interactions between species like predator-prey and pollination. Animal welfare is a key concern for captive animals, agriculture, and research, and is a pillar for the values of society. Understanding animal communication in noisy urban environments - such as dolphin communication in busy ports - will help to inform the use of marine environments.

Students admitted to a Bachelor of Science (Honours) (Animal Behaviour) can follow the same study plan as those admitted to the Bachelor of Science (Animal Behaviour) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them.

Program Structure: In first year students obtain the required foundations in biology and chemistry and an introduction to animal behaviour. Students who do not have a background in chemistry are able to choose introductory chemistry topics, making this specialisation available to those with no scientific background.

In second and third year students pursue more detailed knowledge in animal behaviour. Examples of areas of study include animal diversity; foundations of animal behaviour; genetics, evolution and biodiversity; disease and immunology; integrative physiology of animals and plants; and conservation biology and restoration ecology. Students will have the opportunity to apply their knowledge in a project setting by developing a public conservation plan or environmental impact study. Other opportunities exist for students to conduct a research project in animal behaviour. Both these opportunities give students an understanding of the task involved with a career in this field.

Fourth year is an Honours year where students undertake a research project and further coursework. During this year students are able to work closely with academic and research staff. Students present the results of their research in a thesis and a seminar.

Bachelor of Science (Honours) (Aquaculture and Marine Biology)

SATAC Code: 224291
Duration: 4 years F; equivalent P
Entry Requirements: It is expected that Year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Aquaculture/Marine Biology is available as a double specialisation in the Bachelor of Science and Bachelor of Science (Honours). Marine biology is the study of the living world in the sea, from the simple molecules that support life, to mammals and to entire marine ecosystems. Aquaculture is applied science at the most practical level - and is more than just fish farming. It includes research and production of animals such as oysters, crayfish, and even aquatic plants such as seaweed. This double specialisation is an opportunity for students to gain specialised skills in both Marine Biology and Aquaculture.

Students admitted to a Bachelor of Science (Honours) (Aquaculture/Marine Biology) can follow the same study plan as those admitted to the Bachelor of Science (Aquaculture/Marine Biology) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional
Aquaculture is not just a matter of growing fish and selling these numbers in a sustainable way that meets demand. Aquaculture provides a pathway in which we can produce more seafood than wild stocks can produce; this growth trend is expected to continue in the foreseeable future. Consumers consume shellfish (oysters, abalone, mussels and scallops) and crustaceans (shrimps, prawns, freshwater and marine crayfish), and even aquatic plants such as seaweed. The common link is that all are in great demand.

Aquaculture is more than just fish farming. Aquaculture includes the production of molluscs (including oysters, abalone, mussels and scallops) and crustaceans (shrimps, prawns, freshwater and marine crayfish), and even aquatic plants such as seaweed. The common link is that all are in great demand.

Entry Requirements: it is expected that year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course. Another practically orientated component in the degree is developing a public conservation plan or environmental impact study which puts theoretical knowledge into a societal setting. In the Honours year, students will undertake specialised courses and an individually supervised research project. Students will present the results of their research in a thesis and a seminar.

Bachelor of Science (Honours) (Aquaculture)

SATAC Code: 224211
Duration: 4 years F; equivalent P

Entry Requirements: it is expected that year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Aquaculture is available as a specialisation within Flinders’ Bachelor of Science and Bachelor of Science (Honours) degrees.

Aquaculture is applied science at the most practical level and is more than just fish farming. Aquaculture includes the production of molluscs (including oysters, abalone, mussels and scallops) and crustaceans (shrimps, prawns, freshwater and marine crayfish), and even aquatic plants such as seaweed. The common link is that all are in great demand.

Aquaculture already provides around one-third of all the fish and shellfish consumed globally and this growth trend is expected to continue in the foreseeable future. Consumers demand more seafood than wild stocks can produce; aquaculture provides a pathway in which we can produce these numbers in a sustainable way that meets demand. Aquaculture is not just a matter of growing fish and selling them, it is a complex industry requiring scientific and business skills.

This is the only university course of its kind in South Australia and has the backing of the fishing industry through the South Australian Fishing Industry Council.

Students admitted to a Bachelor of Science (Honours) (Aquaculture) can follow the same study plan as those admitted to the Bachelor of Science (Aquaculture) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them.

Program Structure: the focus in this degree is on combining a strong background in the natural sciences with an understanding of health and safety issues, practical and management issues, and business and communication skills. Much of the practical work is carried out in purpose-built aquarium systems at Flinders and workplace education is provided in collaboration with aquaculture operators in various locations in South Australia, interstate and overseas.

In first year students take introductory topics in aquaculture theory and practice and biology, while gaining grounding in supporting areas such as chemistry.

In second year, more specialised areas are introduced, including genetics, evolution, biodiversity, ecology, animal diversity, aquaculture nutrition and water quality, aquaculture systems and technology, disease and immunology experimental design and statistics.

In third year students expand their knowledge of specific fields of aquaculture, including aquaculture reproduction, marine and freshwater biology, integrative physiology of animals and plants, plant and algal diversity, aquaculture health and product quality and business planning for new ventures. In second and third year students can also select elective topics of interest from other areas of the University.

Fourth year is an Honours year where students undertake a research project and further coursework. During this year students are able to work closely with academic and research staff. Students present the results of their research in a thesis and a seminar.

inspiring achievement
Bachelor of Science (Honours) (Biodiversity and Conservation)

SATAC Code: 224221
Duration: 4 years F; equivalent P
Entry Requirements: It is expected that year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Biodiversity and Conservation is available as a specialisation within Flinders' Bachelor of Science and Bachelor of Science (Honours) degrees.

Biodiversity essentially is the study of all living organisms in the environment, the range of different species that are found in each place and the methods that we can use to manage ecosystems to conserve as many of those species as possible. It is a broad field and so, by design, this course offers the opportunity to combine skills in conservation biology with complementary skills in areas such as computing, chemistry and/or geographic analysis. The Bachelor of Science (Biodiversity and Conservation) examines the increasing and diverse impact humans are having on the natural environment worldwide, addressing such key issues as loss of species, habitat destruction or fragmentation, invasion by introduced animal or plant species and the design of nature reserves and conservation programs. Students may tailor their study programs by choosing from a range of selective topics to focus on areas such as the biodiversity and conservation of whole organisms, conservation genetics or landscape ecology.

Students admitted to a Bachelor of Science (Honours) (Biodiversity and Conservation) can follow the same study plan as those admitted to the Bachelor of Science (Biodiversity and Conservation) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them. The skills obtained during Honours will be of great benefit whatever students choose to do after completion, whether it is progressing to a higher degree, further study in another area or moving into employment.

Program Structure: in first year students will take topics in areas such as biodiversity and conservation, evolution and the molecular basis of life and first level chemistry and have the opportunity to choose elective topics. In second year students will take topics in areas such as genetics, evolution and biodiversity, ecology, animal diversity, experimental design and statistics. In third year students will take topics in areas such as conservation biology, restoration ecology, plant and algal diversity, marine and freshwater biology, integrative physiology of animals and plants, geographical information systems, human impacts and biodiversity and conservation and ecological genetics.

Fourth year is an Honours year where students undertake a research project and further coursework. During this year students are able to work closely with academic and research staff. Students present the results of their research in a thesis and a seminar.

Bachelor of Science (Honours) (Biotechnology)

SATAC Code: 224231
Duration: 4 years F; equivalent P
Entry Requirements: it is expected that year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Biotechnology is available as a specialisation within Flinders' Bachelor of Science and Bachelor of Science (Honours) degrees. Biotechnology is changing the world around us and is considered a growth technology of the 21st century, with job opportunities to match. It is an exciting field of science, combining aspects of medicine and biology. Biotechnology is the use of living organisms - often minute, micro-organisms - to create products or perform tasks for us. Those organisms may be as simple as yeast or as complex as cells, genes, bacteria or DNA. Rapid advances in genetic engineering, protein engineering, cell culture and molecular biology have given us an unprecedented ability to control life processes, leading to new discoveries and innovative solutions to many of the problems facing our modern society. The possible applications are almost endless - from the diagnosis and treatment of human diseases and improved production of therapeutic agents to the development of better crop plant species, transgenic organisms for new drugs, biosensors for environmental pollutants or improved waste treatment processes. This course prepares students to work as professionals in one of the most exciting areas of modern science by combining theory and specialised practical scientific training with the study of related business, legal, ethical and social issues.

Students admitted to a Bachelor of Science (Honours) (Biotechnology) can follow the same study plan as those admitted to the Bachelor of Science (Biotechnology) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them. The skills obtained during Honours will be of great benefit whatever students choose to do after completion, whether it is progressing to a higher degree, further study in another area or moving into employment.

Program Structure: in first year students will take an introductory topic in Biotechnology which will expose them to the diverse opportunities available in the field. First year students also gain a foundation in biology and chemistry, and undertake elective topics.
Second year involves fundamental biology topics (molecular biology, biochemistry, microbiology, genetics and experimental design) and introduces students to the process of transferring bioscience discoveries from the laboratory to the wider community and making a difference to society. The legal, ethical and social interaction between the biosciences and society is also explored.

Third year focuses on deepening and applying scientific knowledge towards solving problems using Biotechnology. Students remain interdisciplinary throughout the degree but can choose from Medical, Environmental, Plant Science to Food, and Industrial and Pharmaceutical Biotechnology topics in their final year. All students in their third year will undergo a laboratory research placement.

The Honours year looks at taking Biotechnology discovery to the marketplace and includes studies in BioBusiness. The remainder of the Honours year consists of an individually tailored eight-month research project at Flinders or another research centre or in partnership with industry. Projects can be based in an academic research environment or industry and can include both business and scientific aspects of biotechnology.

Bachelor of Science (Honours) (Environmental Science)

SATAC Code: 224241
Duration: 4 years F; equivalent P
Assumed Knowledge: Stage 2 Chemistry, Mathematical Studies, Physics
Entry Requirements: it is expected that year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Environmental Science is available as a specialisation within Flinders' Bachelor of Science and Bachelor of Science (Honours) degrees.

To protect our environment we need to fully understand how it works, what impact we can have and how we should set our priorities. Environmental Science focuses on the underlying science that underpins environmental monitoring, assessment and improvement. It is distinct from, but complementary to, areas such as environmental management and environmental health and opens up a variety of career opportunities.

This course appeals to students who thrive on scientific discovery, enjoy working outdoors, and want to make a difference. Teamwork and communication skills are emphasised in professionally focussed topics designed to promote a smooth transition between university study and professional careers in environmental science.

Students admitted to a Bachelor of Science (Honours) (Environmental Science) can follow the same study plan as those admitted to the Bachelor of Science (Environmental Science) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them. The skills obtained during Honours will be of great benefit whatever students choose to do after completion, whether it is progressing to a higher degree, further study in another area or moving into employment.

Program Structure: this degree offers three areas of specialisation. Students can choose to concentrate their studies within one of the following streams:

- Coasts and Catchments, which trains scientists in coastal and catchment hydrology and ecology.
- Environmental Forensics, which will give students the skills to identify and trace the source of environmental contamination.
- Global Water Resources, which examines the interactions, relationships and cycles between water, ecosystems and the environment.

Whichever stream students choose, they will take an interdisciplinary program that combines biology, earth science and chemistry with state-of-the-art technologies such as computer simulation and prediction and forensic identification. The underlying aim is to apply scientific techniques and solutions to issues of ecosystem sustainability.

First year areas of study will include: biology, chemistry, earth and environmental sciences and marine science.

In second and third years students will investigate specific problems and work in teams in hands-on projects in the field and laboratory. Students will also focus on their chosen stream. Field trips are a feature of all three streams.

Fourth year is an Honours year where students undertake a research project and further coursework. During this year students are able to work closely with academic and research staff. Students present the results of their research in a thesis and a seminar.
Bachelor of Science (Honours) (Forensic and Analytical Chemistry)

SATAC Code: 224251
Duration: 4 years F; equivalent P
Prerequisites: Chemistry
Entry Requirements: it is expected that year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Forensic and Analytical Chemistry is available as a specialisation within Flinders' Bachelor of Science and Bachelor of Science (Honours) degrees.

Analytical chemistry involves analysing and identifying elements and compounds. Forensic chemistry is the application of analytical chemistry to matters of a legal nature, whether related to crime, environmental or safety laws, or simply the rules of society. Forensic and Analytical Chemistry, therefore, combines the practice of analytical chemistry with the application to forensic investigation. Forensic and Analytical chemistry will appeal to students who are inquisitive, like problem solving and have a passion for science and laboratory based work.

The Bachelor of Science (Forensic and Analytical Chemistry) is a unique degree in South Australia that has been set up at Flinders University in consultation with Forensic Science South Australia and the South Australian Police. It was also designed in consultation with analytical and forensic chemists working in the public and private sectors.

It is a specialist degree created to teach the skills of one of the most exciting areas of science and to produce graduates to fill specific niches in the job market. Students have the opportunity to gain employment in areas such as crime scene investigation, food, wine and water quality, testing for use and abuse of drugs and working in analytical laboratories.

Students admitted to a Bachelor of Science (Honours) (Forensic and Analytical Chemistry) can follow the same study plan as those admitted to the Bachelor of Science (Forensic and Analytical Chemistry) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them. The skills obtained during Honours will be of great benefit whatever students choose to do after completion, whether it is progressing to a higher degree, further study in another area or moving into employment.

Program Structure: in first year students gain a sound knowledge in chemistry, biology, forensic methods and statistics. Students also have a choice of two electives. Second year includes a range of chemistry topics as well as molecular biology and a specific topic on the chemical analysis of physical evidence, along with a choice of two electives. Third year places specific emphasis on forensic methods, including those used for DNA and drugs and toxicology. In addition students will undertake further studies in analytical chemistry. Students are given the opportunity to apply what they have learnt in advanced laboratories.

Fourth year is an Honours year where students will have the opportunity to plan and execute an individual research project in Forensic and Analytical Chemistry or a related discipline; coursework will have further emphasis on forensic and chemical methods involving the chemistry of energetic materials.

Professional Recognition: the Bachelor of Science (Forensic and Analytical Chemistry) is designed in accordance with accreditation requirements of the Royal Australian Chemical Institute (RACI) which, in some labs, is required to practice as an analytical chemist. Students can apply for a student membership of RACI which provides them with regular copies of their chemistry publication Chem in Oz, website resources, subsidised transport and registration for attending conferences and a range of activities of the local branch of the RACI.

Bachelor of Science (Honours) (Marine Biology)

SATAC Code: 224261
Duration: 4 years F; equivalent P
Entry Requirements: it is expected that year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Marine Biology is available as a specialisation within Flinders’ Bachelor of Science and Bachelor of Science (Honours) degrees.

Marine biology is the study of the living world in the sea, from the simple molecules that support life to the complex interactions between populations of many species. The range of specialty areas is huge. There are marine biologists who study the basic biochemistry of marine organisms, for example, while others study the growth or behaviour of individual plants or animals. Some adopt an even larger perspective and study how entire marine ecosystems function.

The coastal ecosystems and ocean surrounding southern Australia has one of the highest biodiversities worldwide, yet has received relatively little scientific attention to date. This course will introduce students to all aspects of marine science and combines technical depth with great flexibility, allowing students to tailor their progress, skills and knowledge to suit their interests. Great emphasis is placed on teamwork, project design, sampling protocols, in-depth analysis, and written and oral communication, including discussion of key topics. These generic skills will prepare

inspiring achievement
Bachelor of Science (Honours) (Nanotechnology)

SATAC Code: 224271
Duration: 4 years F; equivalent P
Prerequisites: Chemistry, Mathematical Studies and Physics are required for entry to the specialisation in Quantum Nanostructures, while Chemistry will only allow entry into the specialisation in Biomedical Nanotechnology

Entry Requirements: It is expected that year 12 applicants will need to achieve an ATAR of 80 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Nanotechnology is available as a specialisation within Flinders' Bachelor of Science and Bachelor of Science (Honours) degrees.

Nanotechnology is science at the molecular level and is a growth industry with the potential to change the world. It draws on the strengths of all the basic sciences and this course will give students a strong background in these sciences.

In the 20th Century scientists discovered atomic structure and the quantum theory that explains how atoms and molecules work. In the 21st Century nanotechnology lets us see and feel atoms and actually push them around. There are projects under way to build nanochips that interface with the human eye to help restore sight and miniature machines that need no lubricants.

Nanotechnology impacts upon all aspects of industry including solar energy, medicine, aerospace, environmental remediation, telecommunications and computing. Whatever the environment, commercial or research, employment opportunities are at the cutting edge of technology.

Students admitted to a Bachelor of Science (Honours) (Marine Biology) can follow the same study plan as those admitted to the Bachelor of Science (Marine Biology) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them. The skills obtained during Honours will be of great benefit whatever students choose to do after completion, whether it is progressing to a higher degree, further study in another area or moving into employment.

Program Structure: first year includes general biology and chemistry, specific marine science topics, professional skills for marine biologists and electives of the student’s choice. Electives can lead towards a specific employment area and we actively consult with students to help them make their choices.

Second year introduces coasts and oceans, marine ecology, genetics, evolution and biodiversity in dedicated topics, as well as providing fundamental scientific research skills, including experimentation and statistics. Students will get hands-on experience in field trips to investigate various coastal ecosystems.

Third year examines marine ecological processes, marine mammals, birds and reptiles, fisheries biology, science and management, plant and algal diversity and conservation biology and restoration ecology. Students will also carry out a research project in marine biology involving self-directed study in a specialisation of their choice.

Fourth year is an Honours year where students undertake a research project and further coursework. During this year students are able to work closely with academic and research staff. Students present the results of their research in a thesis and a seminar.

Students for employment in a wide range of potential disciplines. In addition, students may spend substantial amounts of time conducting practical exercises on marine organisms, collecting real data from the marine environment and undertaking research projects onshore, in our aquarium facilities, or at sea. These specific skills will ensure that students have the relevant hands-on experience to make them competitive for jobs in marine biology.

Students admitted to a Bachelor of Science (Honours) (Marine Biology) can follow the same study plan as those admitted to the Bachelor of Science (Marine Biology) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them. The skills obtained during Honours will be of great benefit whatever students choose to do after completion, whether it is progressing to a higher degree, further study in another area or moving into employment.

Program Structure: first year includes general biology and chemistry, specific marine science topics, professional skills for marine biologists and electives of the student’s choice. Electives can lead towards a specific employment area and we actively consult with students to help them make their choices.

Second year introduces coasts and oceans, marine ecology, genetics, evolution and biodiversity in dedicated topics, as well as providing fundamental scientific research skills, including experimentation and statistics. Students will get hands-on experience in field trips to investigate various coastal ecosystems.

Third year examines marine ecological processes, marine mammals, birds and reptiles, fisheries biology, science and management, plant and algal diversity and conservation biology and restoration ecology. Students will also carry out a research project in marine biology involving self-directed study in a specialisation of their choice.

Fourth year is an Honours year where students undertake a research project and further coursework. During this year students are able to work closely with academic and research staff. Students present the results of their research in a thesis and a seminar.

Students admitted to a Bachelor of Science (Honours) (Nanotechnology) can follow the same study plan as those admitted to the Bachelor of Science (Nanotechnology) but this program also has a direct entry pathway to a fourth Honours year. Honours is an additional qualification that demonstrates capacity to undertake higher levels of study. An Honours year equips students with high level research, writing and organisational skills and provides students with the opportunity to specialise in a scientific field that is of particular interest to them. The skills obtained during Honours will be of great benefit whatever students choose to do after completion, whether it is progressing to a higher degree, further study in another area or moving into employment.

Program Structure: in first year students take chemistry, physics, mathematics, biology, and a specialist nanotechnology topic. Students will learn about business, enterprise management, economics and legal issues such as intellectual property. All of these skills are vital for any modern scientist.
From second year students will choose to specialise in one of two areas Biomedical Nanotechnology or Quantum Nanostructures and will also complete core topics. The Biomedical Nanotechnology stream includes extensive studies in chemistry and biology. The Quantum Nanostructures stream has a stronger emphasis on physics, chemistry and mathematics.

In the Honours Year students will undertake specialised courses and an individually supervised research project. Students will present the results of their research in a thesis and a seminar.

Bachelor of Science (Honours) Enhanced Program for High Achievers

*SATAC Code: 214721
Duration: 4 years F; equivalent P
Prerequisites: at least three of the following: Biology, Chemistry, Geology, Mathematical Studies, Physics, Specialist Mathematics
Entry Requirements: year 12 applicants must, in addition to meeting the SACE Stage 2 subject prerequisites (or equivalent), obtain an ATAR of 95 or higher (or equivalent). Tertiary transfer applicants must have met the SACE Stage 2 subject prerequisites (or equivalent) or have completed studies in these subject areas at tertiary level and have completed at least one year of full-time study (or the equivalent) with a GPA of 6.0 or higher (or equivalent).

This four year Honours degree is specially designed to offer students of exceptional academic ability an enhanced program of studies. This program is unique in offering opportunities for students to extend their study of science, and embark upon research from first year onwards through research training/project work in every year of the course. This additional challenging material will provide high-achieving students with the opportunity to maximise their intellectual growth and potential. The learning environment will provide opportunities for students with similar interests and capabilities to work together as they pursue their studies, develop their interests and share ideas.

The program combines the technical knowledge and practical training specific to a chosen area of science specialisation with research training and opportunities to join established research teams, where students will be able to work on research projects alongside research staff, and Honours and PhD students. The program will provide the strongest possible foundation for a science-based career. Our graduates will be equipped not just to find their first job in their chosen field, but to explore new options in later years as science - and their own interests - change and develop. The program will also provide a broad range of workplace skills such as problem solving, critical analysis, written and oral presentation, teamwork and computing.

Program Structure: in first year students choose a range of subjects to prepare them for the area(s) of science in which they will specialise in later years and are provided with an introduction to research methodologies and techniques.

In the second and third years students specialise in one or more areas by selecting from a range of inter-disciplinary majors, extended majors and minors. A relevant research project is also undertaken at each of these year levels.

In the fourth (Honours) year, each student undertakes specialised courses and an individually supervised extended research project in the area of science in which he/she is specialising, presenting the results of their research in the form of a thesis and seminars.

Elective topics from non-science areas (eg Archaeology, Legal Studies, Philosophy, Languages, Geography, Environmental Studies, Psychology) may also be included in the first three years of the degree.

Key discipline areas include: Chemistry; Computer Science; Ecology, Evolution and Organismal Biology; Environmental Hydrology and Water Resources; Information Systems; Mathematics; Molecular Biosciences and Microbiology; Molecular Biosciences; Ocean and Climate Sciences; Physics.

Bachelor of Science (Marine Biology)

*SATAC Code: 224171
Duration: 3 years F; equivalent P
Entry Requirements: it is expected that year 12 applicants will need to achieve an ATAR of 70 or above (after the addition of any relevant bonus points for special access schemes) to be competitive for a place in this course.

Marine Biology is available as a specialisation within Flinders' Bachelor of Science and Bachelor of Science (Honours) degrees.

Marine biology is the study of the living world in the sea, from the simple molecules that support life, to the complex interactions between populations of many species. The range of specialty areas is huge. There are marine biologists who study the basic biochemistry of marine organisms, for example, while others study the growth or behaviour of individual plants or animals. Some adopt an even larger perspective and study how entire marine ecosystems function.

The coastal ecosystems and ocean surrounding southern Australia has one of the highest biodiversities worldwide, yet has received relatively little scientific attention to date. This course will introduce students to all aspects of marine science and combines technical depth with great flexibility, allowing students to tailor their progress, skills and knowledge to suit their interests. Great emphasis is placed on teamwork, project design, sampling protocols, in-depth analysis, and written and oral communication, including discussion of key topics. These generic skills will prepare students for employment in a wide range of potential disciplines. In addition, students may spend substantial
amounts of time conducting practical exercises on marine organisms, collecting real data from the marine environment and undertaking research projects onshore, in our aquarium facilities, or at sea. These specific skills will ensure that students have the relevant hands-on experience to make them competitive for jobs in marine biology.

Program Structure: first year includes general biology and chemistry, specific marine science topics, professional skills for marine biologists and electives of the student’s choice. Electives can lead towards a specific employment area and we actively consult with students to help them make their choices.

Second year introduces coasts and oceans, marine ecology, genetics, evolution and biodiversity in dedicated topics, as well as providing fundamental scientific research skills, including experimentiation and statistics. Students will get hands-on experience in field trips to investigate various coastal ecosystems.

Third year examines marine ecological processes, marine mammals, birds and reptiles, fisheries biology, science and management, plant and algal diversity and conservation biology and restoration ecology. Students will also carry out a research project in marine biology involving self-directed study in a specialisation of their choice.

Nanotechnology is science at the molecular level and the quantum theory that explains how atoms and molecules work. In the 21st Century nanotechnology lets us see and feel atoms and actually push them around. There are projects under way to build nanochips that interface with the human eye to help restore sight and miniature machines that need no lubricants.

Nanotechnology impacts upon all aspects of industry including solar energy, medicine, aerospace, environmental remediation, telecommunications and computing. Whatever the environment, commercial or research, employment opportunities are at the cutting edge of technology.

Program Structure: in first year students take chemistry, physics, mathematics, biology, and a specialist nanotechnology topic. Students will learn about business, enterprise management, economics and legal issues such as intellectual property. All of these skills are vital for any modern scientist.

From second year students will choose to specialise in one of two areas Biomedical Nanotechnology or Quantum Nanostructures and will also complete core topics. The Biomedical Nanotechnology stream includes extensive studies in chemistry and biology. The Quantum Nanostructures stream has a stronger emphasis on physics, chemistry and mathematics.

Bachelor of Science in Computing and Digital Media

SATAC Code: 214831
Duration: 3 years F; equivalent P
Assumed Knowledge: Stage 2 Mathematical Methods or Mathematical Studies

This program prepares students for the growing and dynamic area formed by the convergence of computer science and digital media including animation, computer games, computer graphics and information visualisation.

With Flinders’ Screen Studies and Drama Centre (a partner in South Australia’s Helpmann Academy) working jointly with the School of Computer Science, Engineering and Mathematics, students will interact and work with those pursuing a diverse range of careers from performers and directors through to game designers and IT professionals.

Students will be prepared for future roles as a professional developer or computer scientist and will be able to use professional skills and knowledge in a range of organisations: advertising agencies, information and communications technology industry, radio and TV stations, independent film, TV, video and sound production companies, software companies producing creative material including games software, publishing companies, educational institutions, government departments and agencies, large organisations with in house production, independent contracting and consulting, private sector organisations, telecommunications and internet service providers.

Program Structure: the course includes a strong foundation in both the theoretical and the practical aspects of computer science and digital media production, including the use of advanced tools in the area. Students also take topics in both screen studies and creative arts, culminating in a major digital...
media technical project in their final semester. Graduates will be able to use professional skills and knowledge in the systematic development and application of complex computer-based systems, specifically in the digital media arena and in creative multimedia projects.

Professional Recognition: this course has Full Professional Accreditation with the Australian Computer Society.

Bachelor of Social Work and Social Planning

SATAC Code: 224061
Duration: 4 years F; equivalent P

The Bachelor of Social Work and Social Planning is a professional degree program which has been developed to provide an undergraduate pathway to employment in the fields of social work and social planning. In addition to providing a social work qualification that is recognised by the Australian Association of Social Workers, the course also provides knowledge and skills in the expanding field of social planning. It combines traditional social work knowledge and skills with the broader area of social planning, providing expertise not just in the delivery of social services but also in the development and monitoring of programs which are appropriate to current social conditions. Graduates who choose to work as social workers will understand the policy and funding decisions which affect their daily activities, while those who move into policy and planning areas will know the impact of their decisions on people working in the field.

Program Structure: the course contains core topics in social work, social planning, psychology, sociology, business, politics and geography. The third and fourth years of the course incorporate field placements in which students work as trainees in various settings. Social work fieldwork takes place under the supervision of professionally qualified university and agency staff. A current driver's licence and a recognised first aid certificate may be required for some placements.

Professional Recognition: graduates are eligible for membership of the Australian Association of Social Workers.

Bachelor of Theology

SATAC Code: 214361
Duration: 3 years F; equivalent P

Program Structure: students take two majors in Biblical Studies and Historical and Systematic Theology. In addition, students are required to undertake a further area of study: either complete a series of topics in Ministry Studies or Biblical Languages, or take topics to second or third year level from at least one other discipline in the University (students with degrees from other universities may apply for credit for this requirement). Students are encouraged to consult the topics offered within the Bachelor of Arts degree in order to see what other disciplines are available for study within the Bachelor of Theology.

In itself, the degree does not qualify a person for ordination. Anyone who wishes to become a minister of religion is advised to consult the principal of one of the two ACD colleges.

This course is offered in conjunction with the Adelaide College of Divinity Inc (ACD) and most classes are held at the theological college campus at Brooklyn Park. For students enrolled externally the external material is sent from the theological college campus at Brooklyn Park.

Concurrent Degrees: this course can be undertaken concurrently with any other course offered by Flinders University that also allows concurrent enrolment. Subject to availability students can commence the second degree mid year.

Bachelor of Theology (External)

SATAC Code: 214365
Duration: 3 years FX; equivalent PX

Program Structure: students take two majors in Biblical Studies and Historical and Systematic Theology. In addition, students are required to undertake a further area of study: either complete a series of topics in Ministry Studies or Biblical Languages, or take topics to second or third year level from at least one other discipline in the University (students with degrees from other universities may apply for credit for this requirement). Students are encouraged to consult the topics offered within the Bachelor of Arts degree in order to see what other disciplines are available for study within the Bachelor of Theology.

In itself, the degree does not qualify a person for ordination. Anyone who wishes to become a minister of religion is advised to consult the principal of one of the two ACD colleges.

This course is offered in conjunction with the Adelaide College of Divinity Inc (ACD) and most classes are held at the theological college campus at Brooklyn Park. For students enrolled externally the external material is sent from the theological college campus at Brooklyn Park.

Concurrent Degrees: this course can be undertaken concurrently with any other course offered by Flinders University that also allows concurrent enrolment. Subject to availability students can commence the second degree mid year.
Pathway Courses To Your Desired Degree

Some degrees are not available for mid-year entry; however we offer a number of courses at mid-year which lead to the degree of your choice.

Credit transfer is a process that allows students to seek recognition for prior studies. Students who have completed topics within a degree at Flinders and wish to transfer to another degree at Flinders may wish to apply for credit transfer. By using a pathway course like those below you may be eligible for credit towards your preferred course.

<table>
<thead>
<tr>
<th>Degree</th>
<th>Pathway Entry Courses – Consider These Pathways To Your Degree Of Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Arts (Creative Writing)</td>
<td>Arts (214031), Media (Creative Arts) (214851)</td>
</tr>
<tr>
<td>Creative Arts (Digital Media)</td>
<td>Computing And Digital Media (214831), Media (Creative Arts) (214851)</td>
</tr>
<tr>
<td>Creative Arts (Drama)</td>
<td>Arts (214031), Media (Creative Arts) (214851)</td>
</tr>
<tr>
<td>Creative Arts (Screen)</td>
<td>Media (Creative Arts) (214851), Arts (214031)</td>
</tr>
<tr>
<td>Education/ Disability Studies</td>
<td>Disability And Community Rehabilitation (214101)</td>
</tr>
<tr>
<td>Education/ Health Science</td>
<td>Science (Honours) (224191), Arts (214031)</td>
</tr>
<tr>
<td>Education/ Science</td>
<td>Science (214331), Arts (214031)</td>
</tr>
<tr>
<td>Health Sciences/ Environmental Health Practice</td>
<td>Science (Honours) (224191), Science (214331)</td>
</tr>
<tr>
<td>Health Sciences/ Occupational Therapy</td>
<td>Science (Honours) (224191), Science (214331)</td>
</tr>
<tr>
<td>Health Sciences/ Physiotherapy</td>
<td>Science (Honours) (224191), Science (214331)</td>
</tr>
<tr>
<td>Health Sciences</td>
<td>Science (214331)</td>
</tr>
<tr>
<td>Health Sciences Combined Degrees</td>
<td>Science (214331)</td>
</tr>
<tr>
<td>Languages</td>
<td>Arts (214031), International Studies (214221)</td>
</tr>
<tr>
<td>Laws And Legal Practice</td>
<td>Arts (214031), Justice And Society (214241)</td>
</tr>
<tr>
<td>Laws And Legal Practice (Hons)</td>
<td>Law And Legal Practice (Combined), Arts (214031), Justice And Society (214241)</td>
</tr>
<tr>
<td>Laws And Legal Practice (Hons) Combined Degrees</td>
<td>Arts (214031), Justice And Society (214241)</td>
</tr>
<tr>
<td>Medical Sciences (Vision Science)/ Optometry</td>
<td>Science (Honours) (224191), Science (214331)</td>
</tr>
<tr>
<td>Medical Science</td>
<td>Science (Honours) (224191), Science (Biotechnology) (224141), Science (214331)</td>
</tr>
<tr>
<td>Nursing (Pre-Registration)</td>
<td>Science (214331), Arts (214031)</td>
</tr>
<tr>
<td>Nutrition And Dietetics</td>
<td>Science (214331)</td>
</tr>
<tr>
<td>Psychology (Hons)</td>
<td>Behavioural Science (Psychology) (214051), Arts – Major In Psychology (214031)</td>
</tr>
<tr>
<td>Speech Pathology</td>
<td>Behavioural Science (Psychology) (214051)</td>
</tr>
</tbody>
</table>
Further Information

To discuss the opportunities available to you and your entry pathway options please contact the Admissions/Prospective Students Office:

T: (08) 8201 3074 or 1300 657 671 (local call cost)
E: admissions@flinders.edu.au
W: www.flinders.edu.au/students/future
chat to us online at www.flinders.edu.au/chat

Please note that this information is for domestic admissions only. International Students should contact the International Office on (08) 8201 2727 or visit www.flinders.edu.au/international