Laser Safety Procedures

Table of Contents
1. Governing Policy
2. Purpose
3. Scope
4. Definitions
5. Register of lasers
6. Minimum safety requirements
 6.1. General
 6.2. Class 2 and 3R lasers
 6.3. Class 3B and 4 lasers
 6.4. Training
7. Laser risk management
 7.1. Labelling and warnings
 7.2. Safe Work Procedures
 7.3. Lasers in construction or building operations
 7.4. Lasers in health care
 7.5. Portable lasers and associated instruments
 7.6. Intense light sources
 7.7. Laser pointers
 7.8. Laser displays and shows
8. Standards
9. Responsibilities
10. Related procedures
11. Forms

1. Governing Policy

Work Health and Safety Policy
Work Health and Safety Management System

2. Purpose

These procedures describe the requirements:
a. for the identification, assessment, control and use of laser radiation, and
b. to ensure the University meets the requirements of Work Health and Safety legislation.

3. Scope

These procedures apply to all Flinders University workers, students and visitors using lasers at University workplaces or University business.
4. Definitions

<table>
<thead>
<tr>
<th>Accessible Emission Limit (AEL)</th>
<th>Maximum accessible emission permitted within a particular class.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser</td>
<td>An acronym for Light Amplification by Stimulated Emission of Radiation, a laser is any device which can be made to produce or amplify electromagnetic radiation in the 180nm to 1mm wavelength range primarily by the process of controlled stimulated emission. Lasers emit in the ultraviolet, infrared and visible parts of the electromagnetic spectrum (meaning exposure may not be obvious).</td>
</tr>
</tbody>
</table>

Laser classifications (as per AS/NZS IEC 60825.1:2014)

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Laser products which are normally safe under reasonably foreseeable conditions of use, either because of the inherently low emission of the lasers themselves, or because they are totally enclosed and human access to higher levels of internal radiation is not possible during normal operation.</td>
</tr>
<tr>
<td>Class 1C</td>
<td>Laser products which are designed explicitly for contact application to the skin or non-ocular tissue (i.e. hair removal or medical process). This type of laser may exceed the permitted AEL for Class 1 but is eye safe by design.</td>
</tr>
<tr>
<td>Class 1M</td>
<td>Laser products which are normally safe with unaided viewing; however present a hazard with optical viewing aids (i.e. binoculars, telescopes). Skin exposure is generally safe.</td>
</tr>
<tr>
<td>Class 2</td>
<td>Laser products emitting low levels of visible radiation (i.e. from 400 nm to 700 nm) which are safe for the skin but not inherently safe for the eyes. Skin exposure is generally safe.</td>
</tr>
<tr>
<td>Class 2M</td>
<td>Laser products emitting levels of visible radiation (i.e. from 400 nm to 700 nm) that exceed the permitted accessible emission limits for Class 2 but for which, because of the geometrical spread of the emitted radiation, protection of the unaided eye is normally afforded by natural aversion responses to bright light. However, the aversion response may not provide sufficient protection, and injury can occur, with optical viewing aids (i.e. binoculars, telescopes). Skin exposure is generally safe.</td>
</tr>
<tr>
<td>Class 3R</td>
<td>Laser products having a level of accessible emission in excess of the AELs for Class 1 or Class 2 lasers. The risk of injury is low for accidental viewing. Intentional viewing is unsafe. Skin exposure is generally safe.</td>
</tr>
<tr>
<td>Class 3B</td>
<td>Laser products having a level of accessible emission in excess of the AELs for Class 1 or Class 2 lasers. Any viewing, including accidental exposure, is unsafe for eyes. Class 3B laser products are generally low risk for skin exposure but can be harmful at output levels approaching the upper of the limit of this class.</td>
</tr>
<tr>
<td>Class 4</td>
<td>Laser products having a level of accessible emission in excess of the AEL for Class 3B. Unsafe for both the eyes and the skin. Diffuse reflections of the laser radiation may also be hazardous. The laser emission can also be sufficient to ignite material on which it impinges and to generate harmful radiation or fume hazards by interaction with target materials.</td>
</tr>
</tbody>
</table>
5. **Register of lasers**

a. The University must keep a register of laser equipment used on its premises.

b. College/Portfolio areas which have laser equipment must ensure it is registered with the University WHS Unit using the Laser Equipment Registration form.

c. Any changes to laser equipment details, including location, must be updated via the registration form.

d. A completed copy of the Laser Equipment Registration Form for each laser must also be kept by the local area.

e. Where a laser is used as a research tool with multiple uses, these uses should be indicated on the registration form.

6. **Minimum safety requirements**

6.1. General

b. Equipment containing lasers must comply with Australian standards unless alternative measures are adopted that provide equivalent or better protection as set out in the relevant standard.

6.2. Class 2 and 3R lasers

a. Controls to prevent continuous viewing of the direct beam must be implemented.

b. While momentary viewing is not considered to be hazardous, Class 2 and 3R lasers must not be aimed at people and it is preferable that beams are terminated at the end of their useful path or located well above or below eye level.

c. Class 3R lasers must not be viewed with optical viewing aids (i.e. telescopes, binoculars).

6.3. Class 3B and 4 lasers

a. Class 3B and 4 lasers must have:

 i. appropriate controls to prevent unauthorized access to an area whilst lasers are in use (which may include controls such as keypad entry or remote interlock as appropriate)

 ii. beam stop or attenuator

 iii. operate by remote control where possible

 iv. warning signs and labelling as per IEC AS/NZS 60825.1

 v. beams terminated at the end of their useful path

 vi. beams as short as practicable, with minimum number of direction changes, and where practicable, be enclosed

 vii. elimination of specular reflections

 viii. measures to manage hazards present due to diffuse reflections

 ix. use of eye protection

 x. use of protective clothing to protect exposed skin

 xi. medical examination of a laser user by a qualified specialist carried out immediately if there is a suspected injury

 xii. provision of appropriate training on safe use of equipment, including maintenance; and

 xiii. safe work procedures for control of hazards.
b. Room requirements for workshop and laboratory design for Class 4 lasers include:
 i. no windows or windows need to be permanently covered
 ii. an area for storing protective eyewear
 iii. appropriate locks to prevent unauthorized and unprotected personnel from entering
 iv. a non-defeatable door interlock or equivalent measures to prevent accidental exposure during laser operation
 v. signs at entrance
 vi. laser beam path enclosed
 vii. beams positively terminated
 viii. laser work area free of unnecessary specular surfaces
 ix. fire resistant curtain materials where the types of lasers in use present an ignition risk
 x. a clearly visible power cut-off switch which kills power to the laser
 xi. a warning light located outside the laboratory/workshop door to indicate when laser is firing.

6.4. Training
a. Any workers operating the laser equipment must be trained in the proper operation of the equipment including the risks, control measures and personal protective equipment.
b. Records need to be kept locally of trained users for each laser.
c. In addition, all users of Class 3 and 4 lasers must undertake the University’s laser safety training.

7. Laser risk management
a. The WHS Regulations 2012 require the workplace to have suitable controls in place where lasers are used to ensure they do not create a risk to health and safety.
b. Identification of hazards and assessment of risk associated with the use of the laser must be conducted to determine if any further controls need to be implemented in addition to the minimum requirements set out in AS/NZS IEC 60825.1 and AS/NZS IEC 60825.14.
c. A risk assessment must be undertaken before a laser is first used and/or after it has been modified. The assessment must take into account at least the following:
 i. the capacity of the laser to injure people
 ii. an evaluation of the suitability of the laser for the work
 iii. the environment in which the laser is used
 iv. the hazards involved and the associated risks, including during any maintenance, and
 v. the level of training required for staff and students.
d. Persons responsible for lasers must keep a completed copy of the risk assessment.

7.1. Labelling and warnings
a. Each laser must have affixed to it labels as required by Australian standards.
b. Any area where Class 3 and 4 lasers are used must have clear signage with the name of the Laser Safety Officer and contact details including a telephone number at which he or she may be contacted.

7.2. Safe Work Procedures
a. Safe work procedures (SWPs) must be available in a College/area or research centre where Class 3 or 4 lasers are used.
b. The procedures must list the hazards associated with the particular laser(s) used, the conditions under which they can be used and the precautions necessary to ensure safety.

7.3. Lasers in construction or building operations

a. Lasers used in surveying, building or construction must be used in compliance with Australian Standard AS/NZ 2397 Safe use of lasers in the building and construction industry.

b. Class 3B and Class 4 lasers must not be used in construction work.

7.4. Lasers in health care

The use of lasers in dental and medical practice must comply with Australian Standard AS/NZS 4173 Safe use of lasers and intense light sources in health care.

7.5. Portable lasers and associated instruments

Portable lasers and associated instruments (e.g. theodolites, total stations, laser scanners, laser levels) must be risk assessed and controls implemented for each specific use and location.

7.6. Intense light sources

a. Intense light sources such as some LEDs may pose similar risks to eyes and skin and must be risk assessed and controls implemented for each specific use and location.

b. Other light sources including non-ionising UV sources are considered under the IEC 62471 Photobiological safety of lamps and lamp systems standard.

7.7. Laser pointers

a. Laser pointers with an AEL of greater than 1 milliwatt (1mW) are classed as a prohibited weapon and must not be used other than for astronomical use as outlined in the Summary Offences (Weapons) Amendment Act 2012.

b. Laser pointers with an AEL of <1mW may be used for teaching purposes.

7.8. Laser displays and shows

The use of lasers in displays, shows and presentations must comply with AS/NZS IEC 60825.3: Safety of laser products - Guidance for laser displays and shows.

8. Standards

a. Users of lasers must, at a minimum, comply with the following Australian Standards:

 - AS/NZS IEC 60825.1 Safety of laser products – Equipment classification and requirements
 - AS/NZS IEC 60825.14 Safety of laser products – A user’s guide
 - AS/NZS IEC 60825.3 Safety of laser products - Guidance for laser displays and shows
 - AS/NZS IEC 60825.4 Safety of laser products – Laser Guards
 - AS/NZS 1337.4 Personal eye-protection - Filters and eye-protectors against laser radiation (laser eye-protectors)
 - AS/NZS 1337.5 Personal eye-protection - Eye-protectors for adjustment work on lasers and laser systems (laser adjustment eye-protectors)
 - AS/NZS 2397 Safe use of lasers in the building and construction industry
 - AS/NZS 4173 Safe use of lasers and intense light sources in health care

b. Where areas do not comply with specific requirements as set out in the Australian Standards, alternative measures that provide equivalent or better protection must be adopted.
c. The implementation of control measures not specified by the Australian Standards must be risk assessed and controlled in line with these procedures.

9. Responsibilities

Vice-Presidents and Executive Deans of College and Portfolio Heads

a. Where lasers are used, ensure that systems are in place to ensure that these procedures are implemented effectively in their College/Portfolio.

Supervisors, managers and researchers

b. Implement these procedures in their area of responsibility.
c. Ensure laser users are suitably trained in the safe operation of lasers.
d. Provide suitable Personal Protective Equipment (PPE) to laser users.
e. Ensure that any laser incidents are reported.

Property, Facilities and Development Project Officers

f. Ensure that use of a laser or laser product in building or construction by University staff and/or contractors at University sites or premises is in accordance with AS/NZS 2397.

Laser Safety Officer

g. A Laser Safety Officer must be appointed where Class 3B or 4 lasers are present in a workplace. The Laser Safety Officer is responsible for:

i. maintaining a register of all potentially hazardous laser products
ii. monitoring compliance with these procedures for safe laser use
iii. taking immediate and appropriate action when non-compliance is observed
iv. participating in the review of this procedure
v. assisting laser users with laser risk management, including safety precautions to be implemented
vi. ensuring that each area or research centre which uses Class 3R, Class 3B or Class 4 lasers maintains a register of the equipment in their possession
vii. conducting audits on areas that have and use lasers.

Staff and students

h. Comply with safety instructions and procedures, undertake any required training, and use control measures and/or personal protective equipment to ensure their own health and safety and the health and safety of others.
i. Work safely and not put themselves or others at risk of injury from exposure to lasers.

10. Related procedures

WHS Regulations 2012
WHS Risk Management Procedures
Plant Safety Procedures
Personal Protective Equipment

11. Forms

Laser Equipment Registration Form – contact WHS Unit
<table>
<thead>
<tr>
<th>Approval Authority</th>
<th>Vice-President (Corporate Services)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible Officer</td>
<td>Director, People and Culture</td>
</tr>
<tr>
<td>Approval Date</td>
<td>30 September 2020</td>
</tr>
<tr>
<td>Effective Date</td>
<td>30 September 2020</td>
</tr>
<tr>
<td>Review Date*</td>
<td>September 2023</td>
</tr>
<tr>
<td>HPRM file number</td>
<td>CF11/2223</td>
</tr>
</tbody>
</table>

Unless otherwise indicated, this procedure will still apply beyond the review date.

Printed versions of this document are not controlled. Please refer to the Flinders Policy Library for the latest version.